(03 Hours)

Total Marks 80

N.B.:

- (1)Question No.1 is compulsory.
- (2)Attempt any three questions from remaining five questions.
- (3)Assume suitable data if necessary and state it clearly.
- (4)Figures to right indicates full marks.

1. Solve any five

- (a) Explain the concepts of column space and nullspace. For a $m \times n$ matrix of rank r, state the dimensions of column space and nullspace.
- (b) Let y = 3x + 5, where x is a random variable with mean 2 and variance 4. Find the mean and variance of y
- (c) State the Kalman filtering problem also state the important assumptions about the underlying state variable system.
- (d) State the CRLB (Cramer-Rao lower bound) theorem.
- (e) Write a short note on white noise process.
- (f) Explain any one method for generation of real-valued random vector ${\bf x}$ with zero mean using given autocorrelation matrix ${\bf R}_{{\bf x}}$
- 2. (a) Let $\mathbf{p}_1 = [1 \ 6 \ 5]^T$, $\mathbf{p}_2 = [-2 \ 4 \ 2]^T$, $\mathbf{p}_3 = [1 \ 1 \ 0]^T$, $\mathbf{p}_4 = [2 \ 2 \ 0]^T$
 - i. Check whether the set $T_1 = \{\mathbf{p}_2 \ \mathbf{p}_3 \ \mathbf{p}_4\}$ is independent 5
 - ii. Check whether the set $T_2 = \{\mathbf{p}_1 \ \mathbf{p}_2 \ \mathbf{p}_3\}$ is independent. 5
 - (b) Write a note on positive-definite matrices
 - (c) Define and explain l_1 , l_p and l_∞ norms. Find l_∞ norm of $\mathbf{v} = \begin{bmatrix} 3 & 7 & -8 \end{bmatrix} = 5$
- 3. (a) Let x[n] = A + w[n], n = 0, 1, ..., N 1. It is desired to estimate the value of a DC level A in WGN w[n] where w[n] is zero mean and uncorrelated and each sample has variance $\sigma^2 = 1$. Consider the two estimators
 - i. $\hat{A} = \frac{1}{N} \sum_{n=0}^{N-1} x[n]$ ii. $\check{A} = x[0] + x[N-1]$

Find mean and variance of each estimator. State whether these estimators are unbiased. Which one is better according to variance? 10 (P.T.O.)

20

5

Q. P. Code: 27003

- (b) A WSS process with PSD $R_x(e^{j\omega}) = \frac{1}{1.64 + 1.6 \cos \omega}$ is applied to a causal system described by the following difference equation $y[n] = 0.6 \ y[n-1] + x[n] + 1.25 \ x[n-1]$. Compute
 - i. the cross-PSD $R_{xy}(e^{j\omega})$ between the input and output ii. the PSD of the output.
- 4. (a) Define and illustrate following statistical averages with the help of figures

i. Mean ii. Standard Deviation iii. Skewness iv. Kurtosis

- (b) Consider following random processes
 - i. $X(t) = A \cos(\omega t + \phi)$ where ϕ is a random variable uniformly distributed in the interval $[0 \ 2\pi)$
 - ii. $X[n] = A \cos(\omega n)$ where A is a Gaussian random variable with mean 0 and variance 1

Determine whether these random processes are WSS or not.

5. (a) Consider a stationary random process with correlation matrix

$$\mathbf{R}_x = \left[\begin{array}{cc} 1 & a \\ a & 1 \end{array} \right]$$

Find eigen values, eigen vectors and verify

- i. det $\mathbf{R}_x = \lambda_1 \lambda_2$.
- ii. $\mathbf{Q}^{H}\mathbf{Q} = \mathbf{I},$

where -1 < a < 1, $\mathbf{Q} = [\mathbf{q_1} \ \mathbf{q_2}]$ is the eigenmatrix of \mathbf{R}_x , $\mathbf{q_1}$ and $\mathbf{q_2}$ are eigen vectors normalized to unit length, det and I denotes determinant and identity matrix respectively, λ_1 and λ_2 are eigen values.

- (b) Compare and contrast orthogonal and triangular decompositions for zero-mean random vectors.
- 6. (a) Explain MVU estimator. Compute the CRLB for estimating A in the process x[n] = A + w[n], n = 0, 1, ..., N-1 where w[n] is WGN with variance σ^2 and zero mean.
 - (b) Write a note on Kalman filter.

12

12

5

5

8

8

13 7