	(3 hours) [Max Marks	[Max Marks : 80]	
NB:	 Q.1 is compulsory Answer any three out of remaining five questions Assumptions made should be clearly stated Assume any suitable data wherever required but justify the same 		
1	 A) Discuss the architectural details of TMS320VC33 with the help of suitable figures also identify the following details for it. (i) On chip RAM memory size (ii) Interrupts (iii) MIPS (iv) Number of ADC 	12	
	 (iv) Number of ADC (v) Number of timers (vi) GPIO B) Answer the following (i) What is the decimal fraction represented by Q-15 number 0x2400? (ii) Represent +25 in 32 bit floating point representation 	8	
2	A) Explain the fixed point and floating point number representation with the help of suitable examples.B) What is the Q-23 number representation of the decimal fraction +0.3525?	8 6	
	C) What is the importance of numerical integration and its use in power system applications based on DSP processor?	6	
3	A) What is the impact instruction cycle time and MIPS of the chosen DSP processor on its suitability in any power electronics control application.B) Explain the process of coding to executable file creation in context of digital signal processors. Also explain the COFF file structure in detail.	8 12	
4	A) Explain the Euler's forward method of integration and how it can be used to implement the first order low pass RC filter.B) Compare Heun's method, Euler's backward method and Trapezoidal methods of numerical integration.	10 10	
5	 A) Explain any typical scheme of active filtering implemented under balanced voltage conditions. B) Explain the operation and implementation of a 3-φ Phase Locked Loop (PLL) with the help of block diagram and waveforms. 	10 10	
6	 Write a detailed note, on design of DSP controlled standalone Solar Photovoltaic based converter/ inverter system for solar water pump application. Clearly specify all the aspects of design with reference to following points: (i) Power circuits (ii) Sensor circuits (iii) Requirements of DSP in terms of ADCs, PWMs. GPIO, speed etc. 	20	
