Durati	ion 3 Hours Maximum marks 80	
1) Q 2) So 3) A 4) Fi	uestion 1 is compulsory. olve any three from the remaining five questions. ssume suitable data if necessary. gures to the right indicate full marks.	
Q.1. a b c d e	Attempt any four from the following questions. Differentiate between feed forward and recurrent artificial neural networks. What is the importance of bias in an artificial neural network? Explain the delta rule of learning with an example. Explain Max-membership principle of defuzzification State any four learning rules.	20
Q.2.a b	Discuss the learning factors involved in back propagation network. Apply Perceptron learning rule to a network presented with the following training vectors: $X_{1}=[1 \ -2 \ 0 \ -1]^{t}$; $X_{2}=[0 \ 1.5 \ -0.5 \ -1]^{t}$; $X_{3}=[-1 \ 1 \ 0.5 \ -1]^{t}$ The learning constant, c=0.1 and the desired responses for X_{1} , X_{2} and X_{3} are d1= -1, d2= -1 and d3=1 respectively. Assume the initial weight vector to be $W_{1}=[1 \ -1 \ 0 \ 0.5]^{t}$ and obtain the updated weight vector after one epoch.	10 10
Q.3.a	Construct an autoassociative network to store the vectors $X1=[1 \ 1 \ 1 \ 1 \ 1]$, $X2=[1 \ -1 \ -1 \ 1 \ -1]$, $X3=[-1 \ 1 \ -1 \ -1]$. Find the weight matrix with no self connection and calculate the energy of the stored patterns. Using discrete Hopfield network test the pattern $S=[1 \ 1 \ 1 \ -1 \ 1]$.	10
b.	Explain in detail Adaptive Resonance Theory networks.	10
Q.4.a b.	With a neat architecture, explain the training algorithm of Kohonen self-organizing feature maps. With a neat architecture, explain the training algorithm of Adaline network.	10 10
Q.5 a	Two fuzzy sets are defined as:	10
	$\stackrel{A}{\sim} = \left\{ \frac{0.4}{1} + \frac{0.5}{2} + \frac{0.45}{3} + \frac{0.6}{4} + \frac{0.8}{5} \right\}$	

$$\overset{B}{\sim} = \left\{ \frac{0.5}{1} + \frac{0.5}{2} + \frac{0.2}{3} + \frac{0.5}{4} + \frac{0.75}{5} \right\}$$

Perform union, intersection, difference and complement over these fuzzy sets.

b With the help of a block diagram, explain the working of a fuzzy logic controller. 10

- Q.6 Write short notes on any **four**:
 - a) McCulloch-Pitts Neuron
 - b) Perceptron convergence theorem
 - c) Simulated annealing neural network
 - d) Radial Basis Function Networks
 - e) Bidirectional Associative Memory
