			4. 00-	4. 6652.101					
			3 Hours (Total marks: 8	30)					
N.B.	1.	All que	estions are compulsory						
	2.	Figures	s to right indicate full marks.						
	3. Draw neat labelled diagrams wherever necessary.								
	4.	Attemp	pt answer of each main question on new page.						
Q.1	A.	Explain the terms:							
		i.	Cerimetry						
		ii.	Permanganometry						
		iii.	Overvoltage						
		iv.	Electrogravimetry						
		v.	Ostwald's ripening						
		vi.	Sequestering agent						
		vii.	Molality						
		viii.	Primary standard						
	В.		(12)						
		i.	Balance following reaction -						
			$MnO_{4^{-}} + Fe^{2+} \rightarrow Mn^{2+} + Fe^{3+}$						
		ii.	How will you prepare 350ml solution of 0.95 N HCl from giv	en one					
			litre of 1.47N solution.						
		iii.	Give reasons:						
			a. Mohr' determination is carried out within a pH range of 6.5	5 to 9.					
			b. Mohr's method is not suitable for determination of iodides (I	⁻) and					
			thiocyanates (SCN ⁻)						
		iv.	Calculate how much quantity of substance will remain in a	queous					
			phase, if a single extraction of 1g solute having partition coe	efficient					
			K=7 between chloroform and water is carried out with equal v	olumes					
			(20ml) of each solvents.						
		٧.	Name indicator and titrant used in – i. Assay of dried ferrous su	ulphate					
			ii. Assay of ascorbic acid API						
		vi.	State Faraday's laws of electrolysis.						
Q. 2	A.	What	t is Aquametry? Write principle and reactions involved in Karl	Fischer	(4)				
		IIIIal							
		Discu	uss in detail method used for determining organically bound halog	gens.					
	P	:	alain differentiation and lowelling offerty suchtable and such		(4)				
	В.	i. Exp aque	ous titration.	in non	(4)				

ii. Complete the following table:

Compound	Titrant	used	in	its	Indicator
	assay				
Sodium benzoate					
Acetazolamide					

C. What is fractional precipitation? Discuss the estimation of halides using (4) adsorption indicators.

- Q. 3 A. Write a note on normal pulse polarography and differential pulse (4) polarography.
 - B. What is the difference between iodometric and iodimetric titration? Give the **(4)** equations involved in the assay of potassium iodide.
 - C. Write principle, chemical reactions and end point determination involved in **(4)** the assay of calcium gluconate injection **or** assay of aspirin API.
- Q. 4 A. Explain the neutralisation curve for titration of strong acid with strong base (4) by taking suitable example.
 - B. What is gravimetry? Explain organic and inorganic precipitants with suitable (4) examples and reactions.
 - C. Give the role of:

(4)

- i. Sulphuric acid in permanganometry
- ii. Ferroin in cerimetry
- iii. Starch in iodimetry
- iv. Sodium thiosulphate in iodometry
- Q. 5 A. A series of extract assays yielded the following values in terms of mg of total (4) alkaloid per 100mL.

33.40 mg	32.99 mg	33mg	31.95mg	32.35mg
33.5 mg	33.33mg	32mg	31mg	

Calculate mean, median, R.S.D and variance for the recorded values.

- B. Explain how pH is an important factor in complexometric titrations. Write (4) structure and properties of EDTA as a complexing agent.
- C. What is separatability factor? Write a note on counter current extraction. (4)
- Q. 6 A. i. What volume of 1N H_2SO_4 would be required to neutralize 60 ml of (2) 1.256 N NaOH.

ii. How will you prepare 200 ml 0.25 N KMnO₄ solution. (mol.wt.158) (2)

B. i. In Kjeldahl's estimation of an unknown compound, ammonia obtained (2) from 0.99 g of an organic compound was received in 98 mL M/20 HCl, the residual acid in flask required 49 mL of M/20 NaOH for complete neutralization in back titration. What is the percentage of nitrogen in the compound?

ii. Explain end point determination using external indicator in assay of **(2)** Sulphacetamide sodium.

C. i. Give reactions involved in assay of Nickel by dimethylglyoxime. (2)

ii. Calculate gravimetric factor involved in gravimetric determination of **(2)** sulphates as barium sulphate.

[Atomic weights: C:12, H:1, O:16, N:14, Ba: 137.33, S:32]

QP CODE : 26212