N. B. :

i) ii) iii)		Solve any FOUR questions. Assume suitable additional data if necessary & draw the sketches wherever required Refer annexure 1 for empirical formulae		
Q.1	a)) What is Solar Pond? Explain in details		
	b)	Describe different solar air heaters with simple sketches.	07	
	c)	Explain a sun-shine recorder	06	
Q.2	a)	Discuss various types of Solar Energy Collectors.	10	
	b)	Calculate the angle of incidence of beam radiation on a flat plate collector for the following situationLocation:Nagpur (21° 06' N, 79° 03' E)Slope of collector:31 °Surface azimuth angle:15 °Date:December 1, 2016Time:09:00 hr (IST)	10	
Q.3	a)	 In the context of Solar Thermal Applications, Explain i) Initial cost ii) Annual solar savings iii) Cumulative solar savings iv) Life cycle savings v) Payback period 		
	b)	What do you understand by Extra-terrestrial and Terrestrial radiation in regards of SUN, discuss in detail? Explain Solar constant and its significance	10	
Q4	a)	Explain Government policies for promotion of Solar Energy Use in India	10	
	b)	How can solar energy be used for agro products drying and food preservation? Explain in detail.		

Length of collector		2	m
Width of collector		1	m
Length of absorber plate		1.82	m
Width of absorber plate		0.91	m
Location of the collector	Latitude	27°47' N	
	Longitude	76°28' E	
Date	-	February 14	
Time		11:30	h (IST)
Collector tilt		25°	
Surface azimuth angle		30°	
Water flow rate		85	liters/h
Ig		635	W/m^2
Id		110	W/m^2
Ambient temperature		30	°C
Reflectivity of the surrounding surfaces		0.2	
$(\tau \alpha)b$ of the collector		0.8	
$(\tau \alpha)$ d of the collector		0.73	

The temperature rise across the collector is measured to be 6.3 °C for an inlet temperature of 50 °C. If the inlet temperature is decreased by 10 °C with all other data remaining the same, the temperature rise across the collector is 7.5 °C. Calculate

- i. The total incident flux on the collector surface
- ii. The flux absorbed by the absorber plate
- iii. Overall loss coefficient of the collector
- iv. Collector heat removal factor

Q.5

- I. F-chart method
- II. PV generators
- III. Thermal Stratification
- IV. Solar distillation
- V. Building orientation and design

20

20

Annexure:1 Formula Sheet

Extra terrestrial radiation

 $I'_{sc} = I_{sc} (1 + 0.033 \cos (360n/365))$

Angle of Incidence (θ)

$$\cos\theta = \sin\phi(\sin\delta\cos\beta + \cos\delta\cos\gamma_s\cos\omega\sin\beta) + \cos\phi(\cos\delta\cos\omega\cos\beta - \sin\delta\cos\gamma_s\sin\beta) + \cos\delta\sin\omega\sin\gamma_s\sin\beta$$

Zenith angle (θ_z)

$$\cos\theta_z = \sin\phi\sin\delta + \cos\phi\cos\delta\cos\omega$$

Azimuth angle (γ) is given by

$$\cos \gamma = \frac{\sin \phi \cos \delta \cos \omega - \cos \phi \sin \delta}{\sin \theta_z}$$

Zenith angle(θz) is given by

$$\cos\theta_z = \sin\phi\sin\delta + \cos\phi\cos\delta\cos\omega$$

Sunrise and sunset hour angle is given by

 $\omega_{s} = -\cos^{-1}(\tan\phi\tan\delta)$

Time difference between noon sunrise or sunset (hour)

$$h_{ss/sr} = \frac{1}{15} \left[-\cos^{-1}(\tan\phi\tan\delta) \right]$$

Day length

$$T_{day_length} = \frac{2}{15} \left[-\cos^{-1} (\tan \phi \tan \delta) \right]$$

Equation of time correction

B = (n - 1) 360/365and *n* is the day of the year 20 15 Equation of time (min) 10 5 0 -5 -10 -15-20Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec Month Fig. 3.14 Equation of time correction

 $LAT = Standard time \pm 4$ (standard time longitude – longitude of location)

+ (equation of time correction)

Declination (δ)

where

$$\delta = 23.45^{\circ} \sin\left[\frac{360^{\circ}}{365}(284+n)\right]$$

Useful heat gain by the collector

$$q_u = F_R A_p \left[I_T \left(\tau \alpha \right)_{av} - U_L \left(T_{fi} - T_a \right) \right]$$

 $m = \text{-} \left(A_P \; U_L \; F' \right) / \; \{ C_p \; . \; ln \{ \; 1\text{-} \; [U_L \; (T_{fo}\text{-}T_{fi}) \; / \; S\text{-}U_L \; (T_{fi} \; \text{-} \; T_a) \}$

For array of identical collectors

 $F_{R}(\tau \alpha) = F_{R1}(\tau \alpha)_{1} \{ [1-(1-K)^{N} / NK] \}$

 $F_R \; U_L = F_{R1} \; U_{L\,1} \; \{ [1\text{-}(1\text{-}K)^N \, / \, NK] \}$

Where $K=(A_p\ F_R\ \ U_L\)\ /\ m\ C_p$

 $E = 229.18 (0.000075 + 0.001868 \cos B - 0.032077 \sin B - 0.014615 \cos 2B - 0.04089 \sin 2B)$