		(03 Hours) [Total Marks:	80
N.B.:		(1) Attempt any four questions.(2) Assumption made should be clearly stated.	
1.	A.	Typical laminate made of UD layers is under in-plane loading as given below. Material: T300/5208, fiber volume fraction = 0.7, layer thickness = 0.1 mm, N_x = 300 KN/m, N_y = 250 KN/m, and N_{xy} = 15 KN/m. Laminate considered is $[0_n/90_n]_S$. Find out the minimum value of n that would be necessary if the failure is not to take place in the layers. Use Tsai-Hill Failure Theory.	10
	B.	Explain pultrusion process used for manufacturing composite laminates, with a block diagram.	10
2.	A.	Find out B_{11} for the laminates $[0_2/90_2]_T$ and $[0/90]_{2T}$. It can be seen that both the laminates have same number of plies. Comment on the results.	10
	B.	Explain vacuum bagging process and various components involved in it.	10
3.	A.	Determine the curing residual stress distribution along thickness direction for $[90_n/0_n]_S$ laminate made of T300 Carbon-Epoxy. $\Delta t = -80$ °C. Lamina thickness = 0.125 mm.	10
	B.	Explain the mechanism of formation of interlaminar stresses near the free edges for a cross-ply laminate under uniaxial tensile loading.	10
4.	A.	Find out the effective elastic properties (\bar{E}_x , \bar{E}_y , $\bar{\gamma}_{xy}$, and \bar{G}_{xy}) of [0/90] _s laminate made of UD layers of T300/5208 Carbon/Epoxy material. Lamina thickness is 0.1 mm and fiber volume fraction is 0.7.	10
	B.	What is shear coupling effect? Write expressions for it. What terms of stiffness / compliance matrix are responsible for it? What is the consequence of shear coupling on the behavior of composite? Give an example of experiencing shear coupling.	10
5.	A.	Plot the failure envelops on the answer sheet with appropriate proportions, for a	10

[Turn Over

10

10

10

typical UD lamina made of T300/5208 composite on stress plane using Maximum

What are A, B, and D matrices? Explain their significance in the evaluation of

Derive expressions for E_2 and μ_{12} for a specially orthotropic lamina in terms of

How the internal and edge delaminations are repaired in a composite laminate?

Stress and Maximum Strain Failure Theories.

fiber and matrix elastic properties and volume fractions.

performance of a composite laminate.

B.

A.

B.

6.

Q. P. Code: 25700

<u>Given data</u>

Properties of Unidirectional 'Graphite / Epoxy' (T300 / 5208) Lamina

V_f 0.7		Compliance Constants			
Specific Gravity	1.6	S_{11}	$5.525 \text{ (Pa)}^{-1} \times 10^{-12}$		
E_1	181 GPa	S_{22}	97.09 (Pa) ⁻¹ × 10^{-12}		
E_2	10.3 Gpa	S_{12}	$-1.547 \text{ (Pa)}^{-1} \times 10^{-12}$		
μ_{12}	0.28	S_{66}	$139.5 \text{ (Pa)}^{-1} \times 10^{-12}$		
μ_{21} 0.016		Strengths (I	Strengths (MPa)		
G_{12}	7.17 GPa	X_t	1500 MPa		
Stiffness Constants		X_c	1500 MPa		
Q_{11}	181.8 GPa	Y_t	40 MPa		
Q_{22}	10.34 GPa	Y_c	246 MPa		
Q_{12}	2.897 GPa	S	68 MPa		
Q_{66}	7.17 GPa	Thermal Ex	Thermal Expansion Coefficients		
		α_1	0.02 (µm/m)/°K		
		α_2	22.5 (μm/m)/°K		

Relations for Stiffness and Compliance Transformations

	$S_{11}(Q_{11})$	$S_{22}(Q_{22})$	$S_{12}(Q_{12})$	$S_{66} (4Q_{66})$
$\bar{S}_{11}\left(ar{Q}_{11} ight)$	m^4	n^4	$2m^2n^2$	m^2n^2
$\bar{S}_{22}\left(ar{Q}_{22} ight)$	n^4	m^4	$2m^2n^2$	m^2n^2
$\bar{S}_{12}\left(ar{Q}_{12} ight)$	m^2n^2	m^2n^2	$(m^4 + n^4)$	$-m^{2}n^{2}$
$\bar{S}_{66} (4\bar{Q}_{66})$	$4m^2n^2$	$4m^2n^2$	$-8m^2n^2$	$(m^2 - n^2)^2$
$\bar{S}_{16} (2\bar{Q}_{16})$	$2m^3n$	$-2mn^3$	$2(mn^3 - m^3n)$	$(mn^3 - m^3n)$
$\bar{S}_{26} (2\bar{Q}_{26})$	$2mn^3$	$-2m^{3}n$	$2(m^3n-mn^3)$	(m^3n-mn^3)