[Max. Marks 80]

 N.B (1) Question no. 1 is compulsory. (2) Attempt any 3 from the remaining questions. (3) Assume suitable data if necessary. (4) Figures to right indicate full marks. 		
Q 1 (a) Q 1 (b)	Prove using Boolean algebra: "NAND gate is Universal gate" A 7-bit even parity hamming code is received as 1000010. Correct it for any errors and extract 4 bit data	05 05
Q 1(c)	Simplify $F(P,Q,R,S) = \pi M(3,4,5,6,7,10,11,15)$ using kmap and implement using minimum number of gates.	05
Q 1(d)	Explain Johnson Ring Counter	05
Q 2(a)	Reduce equation using Quine McCluskey method and realize circuit using basic gates— $F(A,B,C,D) = \sum m(1,5,6,12,13,14) + d(2,4)$	10
Q 2(b)	Compare TTL and CMOS wrt to gate, voltage level, fan in fan out, propagation delay	10
Q 3 (a) Q 3 (b)	What is race around condition? How to overcome it? Implement full subtractor using basic gates	10 10
Q 4(a)	Design a 32:1 multiplexer using 4:1 multiplexer with suitable diagrams and tables	10
Q 4 (b)	Explain 3 bit asynchronous down counter with timing diagram and truth table	10
Q 5(a)	Explain the working of 4-bit parallel adder. Identify its disadvantage how to overcome it?	10
Q 5(b)	Convert SR flipflop to D flipflop.	10
Q 6	Write short note on (any 4)	20
	 VHDL 4 bit magnitude Comparator Pseudo random number generator Universal Shift Register ALU 	

(3 Hours)