Q.P. Code :24726

		[Time: 03 Hours] [Marks:80]	l
		Please check whether you have got the right question paper.	
		 N.B: 1. Q.1 is compulsory. 2. Attempt any three questions from remaining questions 3. Assume suitable data wherever required. 	
Q.1	a)	Find even and add components for $h(n)=(2,3,1,2,3)$	05
	b) c) d)	Find z- transform of the following x (n) =cos wn u (n). Find the sequence for: - x (n) = δ (n) + 2 δ (n - 1) - δ (n - 2). Give proof of any two properties of Z-Transform.	05 05 05
Q.2	a)	Identify the filter based on its pass band by analytical method. Draw pole-zero plot: $H(z) = \frac{1}{1+0.08z^{-1}}$	10
	b)	Find X(K), using DIT- FFT algorithm for given sequence : $x(n) = \{1,2, 3,4,4,3,2,1\}.$	10
Q.3	a)	Sketch the signals using step and ramp signals. x(t) = t u(t) - (t - 1)u(t - 1) + u(t - 2) - 3 u(t - 3). $x(t) = 2 \delta (n) + 3 \delta (n - 2)$	10
	b)	System is described by the difference equation : y(n) = y(n + 1) + x(n) + x(n - 1) Find: 1) Transfer function 2) Impulse response	10
Q.4.	a)	Find out circular convolution to the following sequence using DFT and IDFT: $x(n) = \{1, 1, 2, 1\} h(n) = \{1, 2, 3, 4\}.$	10
	b)	Classify the following systems as linear / nonlinear, variant / invariant, causal /non-causal and dynamic / static 1 $y(n) = e^{x(n)}$ 2 $y(n) = A x(n) + B$	10
Q.5	a)	Find Z-inverse transform of the following: $X(z) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}}$ For: 1. Causal system 2. Anti-causal system 3. Stable system	10

3. Stable system

b)		ut linear convolution of the following:	10
	Find o	$\{1,2,3\}$ h(n) = $\{1,2\}$. ut linear convolution using circular of the following: $\{1,2\}y(n) = \{2,3,4\}$.	10
	Write	20	
	1.	Properties of DFT	
	2.	Min, Max on Mix phase system	
	3.	Significance of ROC in z- transform with examples	

Q.6
