[20]

Duration: 3 Hours

Total Marks: 80

Note: 1. Q. 1 is compulsory.

- 2. Solve any 3 questions out of remaining questions.
- 3. Assume suitable data if necessary.

Q1)

- a. Write down the classification of buses for load flow analysis.
- b. Draw input-output curve, heat rate and IFC curve of a generating unit.
- c. What are the assumptions made in transient stability studies?
- d. How the equal area criterion can be used for stability analysis.

Q2)

a. Figure shows the one line diagram of a simple three bus power system with generation at bus 1. The magnitude of voltage at bus 1 is adjusted to 1.05 p.u. The scheduled loads at buses 2 and 3 are as marked on the diagram. Line impedances are marked in per unit on a 100 MVA base and the line charging susceptances are neglected. Using Gauss-Seidel method calculate V_2^1 and V_3^1 . [10]

 Derive the swing equation for a synchronous machine that describes the rotor dynamics. [10]

Q3)

a. Two generating units are operating in parallel Incremental fuel cost in rupees per MWh for a plant consisting of two units are:

$dC_1/dP_{G1} = 0.20P_{G1} + 40$	30MW≤ P _{G1} ≤175MW
$dC_2/dP_{G2} = 0.40P_{G2} + 30$	20MW≤P _{G2} ≤125MW
w will the load be shared between the two units as the system load varies	

How will the load be shared between the two units as the system load varies from minimum to maximum? What is the corresponding incremental cost? [10]

b. Compare GS and NR method of load flow studies. [

[10]

Q4)

- A 60Hz generator is delivering 50% of maximum permissible power through a transmission system to an infinite bus. A fault occurs and causes transfer reactance to increase to 400 % of the value before fault. When the fault is isolated and the maximum power transfer is 75% of the original maximum value. Determine the critical clearing angle using equal area criterion. [10]
- b. Explain automatic voltage control [10]

Q5)

- a. Explain proportional plus integral load frequency control and plot dynamic response of the controller with and without integral control action [10]
 b. Derive the expression for the exact coordination equation. [10]
 Q6) Write short notes on (any three) [20]
 - a. Power pool and transactions
 - b. Optimal Unit commitment and reliability considerations
 - c. AGC in restructured power system
 - d. P-V curve for voltage stability analysis
