QP Code: 24003

[Total Marks : 80]

[3 Hours]

- **N.B**: 1. Question No. 1 is **compulsory**.
 - 2. Answer any four questions from the remaining.
 - 3. Assume suitable data if necessary.
 - 4. Answer of the sub-questions of an individual questions should be grouped and written together.
- 1. (a) Discuss in brief about an overview of control system design ?
 - (b) (i) Derive the dynamic model of stirred tank heating process, assuming constant 10 hold up and perfect mixing.
 - (ii) Classify the variables and carryout a degrees of freedom analysis.
 - (c) Explain Gain margin and phase margin.
- 2. (a) A two tank mixing process is initially operating under steady state conditions, 10 with a volumetric flow rate of $2m^3/min$ of a solution. The solute concentration is $1kg/m^3$. The volume of the first tank is $4m^3$ and that of the second tank is $6m^3$. At time t = 0, the solute concentration in the inlet to the first tank suddenly increases to $2kg/m^3$. How long does it take for the solute concentration in the outlet from the second tank to reach 1.6 Kg/m^3 .

(b)

$$7 tt^3/min$$

 $F = 2 ft^2$
 $R_{1=2}$
 $R_{2=5}$
 $R_{2=5}$

Derive the transfer function $\frac{H}{Q}$ for the liquid level system shown in fig. The resistance are linear. H and Q are deviation variables. You are expected to give numerical values in the transfer functions.

3. (a) What conditions must be satisfied by a two tank non-interacting system to exhibit 5 a critically damped response.

5

5

10

2

Consider the teedback control system shown in figure above with the following

transfer functions : $G_c = K_c$, $G_v = \frac{1}{2s+1}$, $G_p = G_d = \frac{1}{5s+1}$ $G_m = 1$. Determine the

range of K_c values that result in a stable closed loop system.

- (c) A second order system is found to have a peak amplitude ratio of 1.1547 at a 5 frequency of 0.7071 rad/min. What are the values of time constant and the damping coefficient of the system.
- 4. (a) A unity feed back system has

$$G(s) H(s) = \frac{80}{s(s+2)(s+20)}$$

Draw the Bode plot. Determine the G.M., P.M., w_{gc}. w_{pc}. Comment on the stability?

(b) Discuss the guidelines for the selection of controlled manipulated and measured variables. 5

- 5. (a) Discuss the continuous cycling method for online controller tuning. 10
 - (b) Write down the rule for plotting root locus diagram.
 - (c) Discuss in brief control valve characteristics.
- 6. (a) The following response was obtained from a dynamic system when a step of 10 magnitude 0.2 was introduced.

Time	Response
0	0.00000
5	0.001757
10	0.025273
15	0.88674
20	0.178158
25	0.268563
30	0.343173
35	0.396964
40	0.432176
45	0.453617

Finally the response approaches constant value of 0.4798 after a long time. Use the data to fit the first order plus dead time model to the systems.

(b) Explain Niquist - stability criteria in detail.

15

5

5