Q.P. Code: 23718

75

(3 hours)	[Total marks: '
Attempt any three questions from each section.	
Answers to the two sections must be written in same an	swer sheet.
Figures to the right indicate full marks.	
Assume additional data if necessary but state the same	clearly.
Symbols have their usual meanings unless stated other	•
Use of simple calculator and statistical tables are allow	
Section I	

1	a.	What is twiddle factor? Find the IDFT of sequence with DFT	6
		[8, -2, 0, -2]	
	b.	Define a rectangular window and derive the frequency response of the	6

- Define a rectangular window and derive the frequency response of the b. rectangular window.
- 2 а For each impulse response listed below, determine the corresponding system is 6 A. Causal B. stable
 - i. $h(n) = \delta(n) + \sin(\pi n)$
 - ii. $h(n) = e^{2n}u(n-1)$

N. B.: (1)

(2)

(3)

(4) (5)

(6)

- What is pole-zero plot? Why it is necessary? Draw pole-zero diagram for a 6 b system having transfer function $H(z) = 1 + z^{-4}$
- Explain Remez Exchange algorithm used in the design of Optimal FIR filters. 3 a. 6 What are maximal Ripple filter? How do you obtain maximal ripple filters? b. 6
- 4 Using block diagram explain analog to digital conversion process. 6 a. Differentiate between fixed-point arithmetic and floating-point arithmetic. Find 6 b.
 - 2's compliment of 0.0101
- What is purpose of Chirp Z transform algorithm? Explain algorithm in detail. 5 a. 6 Explain in detail the bilinear transformation technique used for digitizing an b. 6 analog filter.

Section II

- State and explain general form of a two dimensional difference equation for a 6 6 a. realizable filter.
 - Describe two-dimensional z transform and compute two-dimensional z-7 b. transform of following sequence:

 $x(n_1, n_2) = \begin{cases} K^{n_1} u_0(n_1 - n_2) \\ 0 \end{cases}$ $n_1, n_2 > 0$ otherwise

- 7 Give a simple (5×4) add-shift multiplier. How this multiplier can be realized? 6 a 7
 - Discuss in detail Direct Form FIR filter. b

8	a.	Discuss quantization effects in FFT algorithms.	6
	b.	Explain in place 16 point, radix 4 DIT FFT with normally ordered input and digit reversed output.	7
9	a. b.	Discuss real time convolution via FFT using a single RAM and one AE. Give and explain structure of a simplified general purpose computer.	6 7
10	a. b.	Explain Homomorphic Processing of speech. Draw and explain block diagram of a modern RADAR system.	6 7