		(3 Hours)	[Total Marks: 80]
N.B	(2) Attempt a	No. 1 is compulsory any three out of remaining five questions ions made should be clearly stated	
1.	 (a) Explain Chomsky Hierarchy (b) Differentiate between DFA and NFA (c) Explain Recursive and Recursively enumerable languages (d) Define Regular Expression. Design R.E. for strings ending in consecutive 1's over ∑={0,1}. 		5 5 5 ve 1's 5
2.	-	ite State Machine to determine whether ternary number(base	e 3) 10
	 is divisible 5. (b) Give and Explain formal definition of Pumping Lemma for Regular Language and prove that following language is not regular. L={ aⁿbⁿ n >=1 } 		nguage and 10
3.	(a) Design a PD	A that checks for well -formed parenthesis.	10
	(b) Consider the	e following grammar	10
	$S \rightarrow i$	C t S i C t S e S a	
	$C \rightarrow l$	0	
	For the string 'ibtibtaea' find the following:		
	(i) (ii) (iii) (iv)	Leftmost derivation Rightmost derivation Parse tree Check if above grammar is ambiguous.	
4.	(a) Design a Tu	Tring Machine that recognizes palindrome string where $\sum = \{$	a,b}. 10
(b) Reduce following grammar to GNF.		10	
		$S \rightarrow AB$	
		A→BSB BB b	
		B→a	
	(i)	S→01S 01	
		$S \rightarrow 10S 10$	
		$S \rightarrow 00 \epsilon$	
5.	(a) Convert (0+	ϵ) (10)*(ϵ +1) into NFA with ϵ -moves and obtain DFA.	10
(b) Design a PDA to accept language $\{a^{n-1}\}$		DA to accept language { $a^{n-1}b^{2n+1} n \ge 1$ }	10
6.	Write short note on following (any 4)		20
	(a) Closure properties of Context Free Language		
(b) Applications of Regular expression and Finite automata			
	(c) Rice's Theorem		
	(d) Moore and	Mealy Machine	

(e) Differentiation between DPDA and NPDA