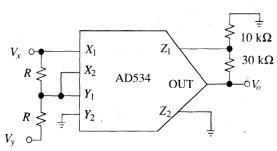
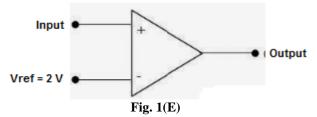
(3 Hours) [Total Marks: 80]


- **N.B.:** (1) Question No. 1 is compulsory.
 - (2) Solve any three questions from the remaining five.
 - (3) Figures to the right indicate full marks.
 - (4) Assume suitable data if necessary and mention the same in answer sheet.

Q.1 Attempt any 4 questions:

[20]


- (A) Give any five features of IC 555.
- (B) How does precision rectifier differ from conventional rectifier?
- (C) In a Fig. 1(C) using multiplier IC AD534, show that the output voltage is

$$Vo = \frac{(V_x^2 - V_y^2)}{10} \, .$$

Fig. 1(C)

- (D) Draw a neat circuit diagram and input-output waveforms of an inverting Schmitt trigger. Give the expressions for its threshold levels.
- (E) If the input to the ideal comparator shown in the Fig. 1(E) is a sinusoidal signal of 8 volt peak to peak without any DC component, then check whether the duty cycle of the output of comparator is 33.33% or 25% or 20%. Prove it.

- Q.2 (A) With the help of a neat circuit diagram explain any one application of PLL 565. [10]
 - (B) Design a square wave generator using IC 555 for an output frequency of kHz and an adjustable duty cycle of 70% to 90%.
- Q.3 (A) Draw a neat circuit diagram of a Wein bridge oscillator using op-amp. Derive its frequency of oscillation. What are the values of *R* and *C* for frequency of oscillation to be 10 kHz?
 - (B) Draw a neat circuit of voltage to current converter with floating load and derive [10] the expression for its output current.

Page 1 of 2 P.T.O

- Q.4 (A) Design a Second order Butterworth non-inverting high pass filter to provide a [10] cut-off frequency of 5 KHz and pass band gain of AF=2.
 - (B) Design a counter for counting a sequence 5, 6, 7, 8...15, 5... using MSI 74163 [10] IC. The pin terminology and functionality of MSI 74163 is given in Fig. 4(B).

74x163			Inputs				Current State				Next State			
CLK			CLR	LD	ENT	ENP	QD	ac	QВ	QA	QD*	QC*	QB∗	QA*
9 CLR		clear	0	х	х	Х	х	Х	х	х	0	0	0	0
TO LD ENP		load	1	0	x	X	x	X	X	X	D	С	В	Α
10 ENT		hold	1	1	0	X	х	х	х	x	QD	QC	QB	QA
10 ENT	QA 14	hold	1	1	x	0	x	x	x	x	QD	QC	QB	QA
4 B	QB 13		1	1	1	1	0	0	0	0	0	0	0	1
5 C	QC 12		1	1	1	1	0	0	0	1	0	0	1	0
6 D	QD 11		1	1	1	1	0	0	1	0	0	0	1	1
	RCO 15		1	1	1	1	0	0	1	1	0	1	0	0
	1,00		1	1	1	1	0	1	0	0	0	1	0	1
_	_				F	ig. 4(I	3)							

- Q.5 (A) With the help of functional block diagram explain the working of voltage regulator LM317 to give an output voltage variable from 5 V to 10 V to handle maximum load current of 500 mA.
 - (B) What is an instrumentation amplifier? Draw its neat circuit using three amps. Design instrumentation amplifier for variable gain of 0.5 to 100.
- Q.6 Write short notes on: (Attempt any two) [20]
 - (A) Current fold-back protection in IC 723.
 - (B) Sample and Hold Circuit.
 - (C) IC74181 Arithmetic Logic Unit.
