Q.P. Code :22869

[Time: Three Hours]

Please check whether you have got the right question paper.

- N.B: 1. All questions are compulsory.
 - 2. Figures to the right indicate full marks.
 - 3. All questions carry equal marks.
 - 4. Use of Logarithmic table/Non-programmable calculator is allowed.
- Q.1 Explain any five of the following:-

(a) Structure of PbO.

- (b) Pervoskite structure.
- (c) Applications of liquid crystals.
- (d) Colour centres.
- (e) Hoping conduction.
- (f) Magnetic properties of illmenites.
- (g) Method of descending symmetry.
- (h) Normal modes of vibration in water.
- Q.2 (a) Explain spinel structure with suitable example. 5 OR (a) Describe edge and screw dislocations. 5 (b) Describe ReO₃ structure. 5 OR (b) Write informative note on grain boundary. 5 (c) The average energy required to create Schottky defects in an ionic crystal is 2 eV. Calculate 5 the ratio of number of Schottky defects at 800K and 400K. (a) Discuss Arc technique for the synthesis of Inorganic materials with suitable example. Q.3 5 OR (a) Explain different factors which influence reactions of solids. 5 (b) Describe high pressure method for the synthesis of Ignorance materials. 5 OR (b) State and explain Fick's laws of diffusion. 5 5 (c) Write an informative note on Ruby laser.

[Marks:75]

15

Q.P. Code :22869

Q.4	(a)	Explain Seebeck effect and its applications	5
		OR	
	(a)	Discuss the magnetic properties of spin glasses.	5
	(b)	Describe ferroelectric materials with suitable examples and give their applications	5
		OR	
	(b)	Give short note on hysteresis loops.	5
	(c)	Elaborate on band theory.	5
Q.5	(a)	On the basis of MOT explain bonding in $B_6 H_6^{2-}$.	5
		OR	
	(a)	Explain splitting of energy levels in different chemical environment of ligands.	5
	(b)	Discuss the correlation diagram for d ² ions in tetrahedral field.	5
		OR	
	(b)	Give selection rules of IR.	5
	(c)	Elaborate on bonding in ferrocene on the basis of MOT and its magnetic nature.	5
	-		
