Q.P. Code :18298

(MAX. MARKS : 80)

(Time: 3 HOURS)

Please check whether you have got the right question paper.

Note:

- 1. Question **No. 1** is compulsory.
- 2. Attempt any three questions out of remaining five questions.
- 3. Assume suitable data wherever necessary.
- 4. Figures to right indicate full marks.
- Q.1 Answer the following (**Any four**)

a	. Explain air to open pneumatic control valve.	5
b	. Explain linearization in process dynamics.	5
c	. Explain the importance of controllers in feed back control system.	5
d	. Derive the time constant for liquid level system.	5
e	. Define Overshoot, rise time, period of oscillation, Decay ratio, response time.	5

- Q.2 a. A step change of magnitude 5 is introduced into the unity feedback control system. 10 The second order system is being controlled by means of P-controller having Kc = 15. Find the response of given control system as a function of time and also find overshoot, decay ratio and rise time.
 - b. Derive the transient response of PID controller for servo problem.
- Q.3 a. A thermometer having first order dynamics is placed in a temperature bath of 45°C. 10
 After the thermometer reaches the equilibrium with the bath, the bath temperature is subjected to sinusoidal forcing function about its average temperature of 45°C with an amplitude of 15°C. If the period of oscillation is 45 sec per cycle and the time constant of thermometer is 15 sec, determine the following
 - i) Max. and minimum temperatures indicated by the thermometer
 - ii) Amplitude ratio
 - iii) Phase lag
 - b. Derive the transfer function for regulatory mechanism control problem for 10 positive feedback system.

TURN OVER

10

Q.P. Code :18298

Q.4	a.	List different types of pressure measuring devices. Explain any one in detail.	6
	b.	The open loop transfer function of a control system is given by	14
		$G(s) = \frac{K_c(s+1)}{(10s+1)(0.2s+1)}$ Sketch the Bode plot of the control system.	
Q.5	a.	Explain procedure for Routh's stability criteria.	10
	b.	The open loop transfer function of a control system is given as	10
		$G(s) = \frac{K_c(0.5s+1)}{s(s+0.5)}$. Sketch the root locus of the control system. Determine the value	
		of gain of the controller Kc for which the system becomes just unstable.	

Q.6		Write a note on any four	
	a.	Radiation pyrometer	5
	b.	Phase and gain margin	5
	c.	Feed forward control system	5
	d.	Cascade control	5
	e.	Transducers	5