		(3 Hours) [Total Marks: 100]
	N.B.	 (1) Solve any Five questions from question number 1 to 8. (2) Figures to the right indicate full marks.
1.	(a)	State and prove i) Hölder's inequality and ii) Minkowski's inequality.
	(b)	Verify that $ x _1 := \xi_1 + \xi_2 + \dots + \xi_n $ ($x = (\xi_1, \xi_2, \dots, \xi_n) \in \mathbb{C}^n$) is a norm function on \mathbb{C}^n .
2.	(a)	Prove that any two norms on a finite dimensional vector space over $\mathbb R$ are equivalent.
	(b)	Show that $\mathscr{C}[a,b]$, the set of all continuous real valued functions on interval $[a,b]$ is complete.
3.	(a)	State and prove the lemma of Riesz.
	(b)	Prove that any linear operator on a finite dimensional normed linear space <i>X</i> is bounded linear operator.
1.	(a)	Let <i>X</i> , <i>Y</i> are normed linear spaces over \mathbb{R} . If <i>Y</i> is a Banach space over \mathbb{R} , then prove that $B(X,Y)$ is a Banach space over \mathbb{R} .
	(b)	If B, B' are Banach spaces over \mathbb{R} and if T is continuous linear operator from B onto B' , then prove that the image of the open sphere centered at the origin in B contains an open ball centered at the origin in B' .
5.	(a)	Let (T_n) be a sequence of bounded linear operators $T_n : X \to Y$ from a Banach space X into a normed linear space Y . Show that if sequence $(T_n(x))$ is bounded for every $x \in X$ then sequence (T_n) is bounded.
	(b)	Let <i>X</i> be a normed linear space and let $x_0 \neq 0$ be any element of <i>X</i> . Prove that there exists a bounded linear functional <i>f</i> on <i>X</i> such that $ f = 1$ and $f(x_0) = x_0 $.
5.	(a)	Prove that l^2 is a Hilbert space.
	(b)	State and prove the Cauchy-Schwarz inequality.
7.	(a)	Let <i>X</i> be a normed linear space over \mathbb{R} . Prove that the set of eigenvalues of a compact linear operator $T : X \to X$ on a normed space <i>X</i> is countable, and the only possible point of accumulation is $\lambda = 0$.
	(b)	Let $T: X \to X$ be a compact linear operator and $S: X \to X$ be a bounded linear operator on a normed linear space X over \mathbb{R} . Then prove that composite $T \circ S$ is a compact operator.
8.	(a)	Define a compact operator. Let X, Y be normed linear spaces over \mathbb{R} and $F : X \to Y$ be a linear map. Prove that F is a compact operator if and only if for every bounded sequence (x_n) in X , sequence $(F(x_n))$ contains a subsequence which converges in Y .
	(b)	Let <i>X</i> , <i>Y</i> be normed linear spaces over \mathbb{R} . If $F \in B(X, Y)$ and has finite rank, then prove that the range $R(F)$ is closed in <i>Y</i> and <i>F</i> is compact.

____****_____