[Time: - 3 Hours]

N.B.:

1. Question No.1 is compulsory

2. Solve ANY THREE questions from Q2 to Q6

3. Assume suitable data wherever necessary and state it clearly.

Q.1.	Answer ANY FIVE					
	(a) An Analog Signal is band limited to 8 Hz sampled at Nyquist rate and Quantized					
	at 5 levels with probabilities 0.5, 0.125, 0.0625, 0.25 and 0.0625.					
	Calculate entropy and information.	(4)				
	(b)Explain with neat block diagram the Matched filter.	(4)				
	(c) What is optimum receiver? Explain in detail.	(4)				
	(d) Explain Lempel-Ziv Coding in detail	(4)				
	(e)What is EYE PATEERN? Explain its significance.	(4)				
	(f) Differentiate between Source Coding and Channel Coding.	(4)				
	(g) State and explain central limit theorem.	(4)				
	(h)State and explain Shannon's theorem.	(4)				
	(i)Why MSK is called shaped QPSK?	(4)				

Q2. (a) A discrete memory less source has an alphabet of five symbols with the probabilities-

Symbol		S1	S2	S 3	S4	S5	
Probability		0.40	0.19	0.16	0.10	0.15	
	 (I)Construct Huffman code (II)Calculate code efficiency and the redundancy of the code. (b) What is Pseudo-noise (PN) Sequence in spread spectrum technology? Why they are used spread spectrum modulation system? 						.0)
)6)
	(c) State	and explain Inter	channel and Inter	symbol interferer	ice	(0)4)
Q3.	(a) Show that for an input signal which is a sequence of rectangular positive and negative integrator is the matched filter.					negative pulse (1	s, the
	(b) Expl	ain 4-ary PSK alo	ng with the followi	ng line:-		(1	.0)
	(I)Modulation and demodulation block diagram of offset QPSK.						
	(II) Plot	and hence Bandwi	dth.				
(III) Signal space representation hence Euclidian distance.							
Q.4.	(a) Com sequence	pare between slow e for the same.	frequency hoppin	ng and fast frequen	icy hopping.Assun	ne the data and (1	d PN 0)
	(b) Defin system h	ne antijam charact as the following p	eristics of spread arameters.	spectrum system.	If the direct seque	nce spread spe (1	ectrum 10)
	Data seq	uence bit duration	n Tb=6.125 ms				
	PN chip	duration Tc=1.5 n	nicroseconds				
	The pro	bability of error is	less than 10 ⁻⁵ (Eb	/No=10)			

Then calculate processing gain and gain margin

Q.5.	(a) With the help of neat block diagram and waveform, explain how a message transmitted in BFSK? What type of receiver is used for BFSK reception?	(10)				
	(b) Prove that for the 16-ary QASK digital modulation technique, the Euclidean distance is given b $d = 2 \sqrt{0.4}$ Eb					
Q.6.	where ED is normalized energy per bit also draw signal constellation diagram for 16-ary QPSK and Compare with 16-ary QASK. Answer ANY FOUR of the following	(10)				
	(a) Explain significance of AWGN channel.	(5)				
	(b)Explain Line codes and their desirable properties	(5)				
	(c) Differentiate between BPSK, DPSK and DEPSK.	(5)				
	(d)Define Hamming codes. Show that the Hamming Code corrects only single bit error.	(5)				
	(e)Decoding of Convolutional codes using Viterbi algorithm	(5)				
	(f) explain with suitable example the cyclic codes.	(5)				
