Scheme A(External)	(3 Hours)	Total marks: 100
Scheme B(Internal/External)	(2 Hours)	Total marks: 40

N.B: 1) Scheme A students answer **any five** questions.

- 2) Scheme B students answer **any three** questions.
- 3) All questions carry equal marks.
- 4) Write on the top of your answer book the scheme under which you are appearing.
- (a) How many integers strictly between0 and 10,000 have exactly one digit equal to 5?
 (b) Determine number of 8-permutations of the multiset T = {3.a, 2.b, 4.c}
- 2. (a) Prove the recurrence relation using combinatorial argument for D_n , derangement of n objects; $D_n = (n-1)(D_{n-1} + D_{n-2})$, $n \ge 3$.
 - (b) If S(n,k) denotes Stirling numbers of second kind then show that

(i)
$$S(n,1) = 1 = S(n,n)$$
,
(ii) $S(n,2) = 2^{n-1} - 1$,
(iii) $S(n,n-1) = \binom{n}{2}$, for $n \ge 2$.

- 3. (a) What is circular permutation?
 Ten people including two who do not wish to sit next to one another are to be seated at a round table. How many circular sitting arrangements are there?
 - (b) State and prove strong form of Pigeon hole principle. Give example.
 - 4. (a) Find the sum of all coefficients in (4x -3y +z)⁵.
 (b) State and prove Baye's theorem.
- 5. (a) Solve the recurrence relation a_n = 2a_{n-1} + 3ⁿ subject to the initial condition a₀ = 2; n ≥ 1.
 (b) Compute the Möbius function of linearly ordered set (X_n, ≤) where X_n = {1, 2, 3,...., n}.
- 6. (a) Define SDR, system of distinct representatives. Find the number of SDR's for the family {1}, {1,2},...,{1,2,3,...,n}.
 - (b) There are three groups of children containing 3 girls and 1 boy, 2 girls and 2 boys, 1 girl and 3 boys. One child is selected at random from each group. Show that the chance that the three selected consists of 1 girl and 2 boys is 13/32.
- (a) Show that every sequence of n²+1 distinct real numbers contains a subsequence of length n+1 that is either strictly increasing or strictly decreasing.
 - (b) Determine number of regions that are created by n mutually overlapping circles in general position in the plane

- 8. (a) Show that $\sum_{k=1}^{n} k {\binom{n}{k}}^2 = n {\binom{2n-1}{n-1}}.$
 - (b) What is variance of discrete random variable? Compute variance of random variable with normal distribution.
