External (Scheme A)	(3 Hours)	Total Marks: 100
Internal (Scheme B)	(2 Hours)	Total Marks: 40

N.B.:Scheme A students should attempt any five questions. Scheme B students should attempt any three questions. Write the scheme under which you are appearing, on the top of the answer book.

- Q1. (a) If H and K are two subgroups of a group G, Prove that H U K is a subgroup of G if and only if either $H \subset K$ or $K \subset H$.
 - (b) If N & M are normal sub groups of a group G, then show that $N \cap M$ is a normal sub group of G.
- Q2. (a) Prove that if a group G of order 28 has a normal subgroup of order 4, then G is abelian.
 - (b) Let G be a finite abelian group such that p divides o(G), p being a prime number then show that there exists an element $a \neq e \in G$ such that $a^p = e$.
- Q3. (a) Prove that every group of prime order is abelian.
 - (b) Show that every quotient group of a cyclic group is cyclic. Give an example to show that the converse need not to be true.
- Q4. (a) Let $f: R \to R'$ be a homomorphism of a ring R onto a ring R'. Then show that

$$\frac{R}{Ker f} \approx R'$$

- (b) Find the maximal ideals of Z_{12} , the ring of integers modulo 12.
- Q5. (a) Prove that a finite integral domain is a field.
 - (b) Show that in a unique factorization domain every pair of non zero elements have a g.c.d and l.c.m. .
- Q6. (a) Let U and V be the vector spaces over the field F and let T be a linear transformation from U into V. Suppose that U is finite dimensional then prove that Rank (T) + Nullity (T) = dim (U).
 - (b) Show that the mapping T: $V_2(R) \rightarrow V_3(R)$ defined as T (a, b) = (a + b, a b, b) is a linear transformation from $V_2(R)$ into $V_3(R)$. Find the range, rank, null space and nullity of T.

Q7. (a) Let A and B be linear transformations on a finite dimensional vector space V and let

AB=I. Then show that A and B are both invertible and $A^{-1} = B$.

Give an example to show that this is false when V is not finite dimensional.

(b) Find the Rank of the matrix.

[-1	2	3	-2]
2	-5	1	2
3	-8	5	2
L 5	-12	-1	6

Q8. (a) Suppose that α and β are vectors in an inner product space. Then show that

 $\parallel \alpha + \beta \parallel^2 \ + \parallel \alpha - \beta \parallel^2 \ = 2 \parallel \alpha \parallel^2 + 2 \parallel \beta \parallel^2$

(b) Find the minimal polynomial for the real matrix.

[7	4	-1]
4	7	-1
L-4	-4	4 J