Time:	3 Hours	[Total Marks: 100]
/	Attempt any five questions out of eight . All questions carry equal marks.	
	State and prove the orbit-stabilizer formula. State without proof any one the Sylow theorems. Explain clearly all Determine all the Sylow 2-subgroups of S_3 . Show that they are all conju	
Q. 2. (a) (b)	 State and prove Jordan Hölder theorem for finite groups. (i) Let G be a group and let H be a normal subgroup of G. Prove that i are solvable, then so is G. (ii) Prove that every group of order 9 is abelian. 	(10) f both H and G/H (5) (5)
Q. 3. (a) (b)	 State and prove Hilbert basis theorem. (i) Define the term: Noetherian ring with one example. If k is a field ring k[X₁, X₂,, X_n,] in countably many variables over k Noeth (ii) State and prove (any one) isomorphism theorems for modules over a R with unity. 	erian? Justify. (5)
Q. 4. (a) (b)	 Prove that for every prime p and every natural number n, there exists a pⁿ. (i) Let R be a commutative ring with unity and let M be an R-model Ann R = {r ∈ R rn = 0, for all n ∈ N} is an ideal of R. For N ⊂ L are submodules of M, then Ann(L) ⊂ Ann(N). (ii) Let F be a field and X be an indeterminate and let R = F[X]. Let V over F and T be a linear transformation from V to V. Write a form into an F[X]-module. Verify that V is an F[X]-module via this form 	(10) odule. Prove that irther show that if (5) V be a vector space nula for making V
Q. 5. (a)	 (i) Define the terms: algebraic element and transcendental element. G each with correct justification. (ii) Determine the degree of the field extension Q(√5+√7) over Q with c (5) 	(5)
(b)	State and prove primitive element theorem.	(10)

- Q. 6. (a) (i) State (without proof) the fundamental theorem for Galois theory. Explain clearly all the notation used. (5)
 - (ii) Define the term: cyclotomic field. Determine the degree of the cyclotomic field over Q with correct justification.
 (5)
 - (b) Determine whether the regular 5-gon is constructible by straightedge and compass. Justify. (10)

- Q. 7. (a) (i) Prove that the map $a + b\sqrt{2} \mapsto a b\sqrt{2}$ is an automorphism of $\mathbb{Q}(\sqrt{2})$. Find the fixed field of this automorphism. (5)
 - (ii) Determine the degree of the splitting field of $X^4 2$ over \mathbb{Q} with correct justification. (5)
 - (b) Let R be a commutative ring with unity and let M be an R-module. Prove that the following statements are equivalent:
 - (i) Every non-empty set of submodules of M contains a maximal element under inclusion.
 - (ii) Every submodule of M is finitely generated.

(10)

- Q. 8. (a) (i) Define the terms: Artinian ring, Artinian module. Give one example of each. (5) (ii) Let G be a group acting on a set X. Prove that the stabilizer in G of an element $x \in X$ is a subgroup of G. (5) (1) Let $(1,2,2,4,5) \in G$. Find $(5,6) \in G$ and $(1,2,2) \in G$. (10)
 - (b) Let $\sigma = (1\ 2\ 3\ 4\ 5) \in S_5$. Find $\tau \in S_5$ such that $\tau \sigma \tau^{-1} = \sigma^{-1}$. (10)