Q.P. Code :09452

[Time: 3 Hours]

Please check whether you have got the right question paper.

N.B: 1. All questions are compulsory.

- 2. Use of simple calculator is allowed.
- 3. Figures to the right indicate full marks.

Q.1 (A) Attempt any 7 [2 marks each]

1) If
$$A = \begin{bmatrix} 3 & 4 \\ 5 & 7 \end{bmatrix}$$
 then the inverse of the A is:
a) $\begin{bmatrix} 7 & -4 \\ -5 & 3 \end{bmatrix}$
b) $\begin{bmatrix} 3 & 5 \\ 4 & 7 \end{bmatrix}$
c) $\begin{bmatrix} -4 & 7 \\ -5 & 3 \end{bmatrix}$
d) $\begin{bmatrix} 7 & -5 \\ -4 & 3 \end{bmatrix}$

- 2) With respect to Rolle's theorem the value of 'c' corresponding to $f(x)=x^2-4x+3$ is:
 - a) 1
 - b) 2
 - c) 3
 - d) 4
- 3) The value of $\int log x \, dx$ is:
 - a) 1/x
 - b) xlogx+x+c
 - c) xlogx-x+c
 - d) xlogx-x
- 4) If y=2x, then Δy by taking h=1 is:
 - a) 4
 - b) 2
 - c) 3
 - d) 1

5) If A= $\begin{bmatrix} 3 & 1 & 2 \\ 1 & 2 & 3 \\ x & 2 & 4 \end{bmatrix}$ is a singular matrix, then the value of x is:

- a) 1
- b) 2
- c) 4
- d) 6

14

6) The Nth derivative of $f(x) = \log(2x+1)$ is:

a)
$$y_n = \frac{1}{2(2x+1)}$$

b) $y_n = \frac{(1)^{n-1}(n-1)!2^n}{(2x+1)^n}$
c) $y_n = \frac{(1)^n(n)!2^n}{(2x+1)^n}$

d)
$$y_n = \frac{(1)^n (n-1)! 2^n}{(2x+1)^n}$$

- 7) General solution for the differential equation $(D^3-6D^2+9D)y=0$ is:
 - a) $(c_1x+c_2)e^{3x}+c_3$
 - b) $c_1e^{3x}+c_2e^{3x}+c_3e^{0x}$
 - c) $(c_1x+c_2x)e^{3x}+c_3$
 - d) $(c_1x+c_2)e^3+c_3e^{3x}$
- 8) The partial derivative of $Z=3x^2+2xy+xy^2$ with respect to x is:
 - a) 6x+2y+2xy
 - b) $6x+2y+2y^2$
 - c) $3x+2y+y^2$
 - d) $2x+xy+xy^2$

- 9) If A = $\begin{bmatrix} 1 & 2 & 3 \\ t & 2 & 4 \end{bmatrix}$ is a singular matrix, then the value of t is:

 - a) 1
 - b) 2
 - c) 4
 - d) 6

(B) Attempt any one (3 marks)

10) Which of the following is not a homogeneous differential equation?

- a) f(x,y)=2x-9y
- b) $f(x,y)=3x^2-7y^3$
- c) $f(x,y)=x^2+3y^2-3xy$
- d) a and c

11) The value of $\int_{-2}^{2} x^5 dx$ is:

- a) 16/3
- b) 8/3
- c) 0
- d) 3/16

Q.2 (A) Attempt any two (4 marks each)

- 1) Find the Nth derivative of $y = \frac{x}{(x+2)(x-2)}$
- 2) Using Maclaurin's series, give the expansion of $f(x)=\sin x$.
- 3) Examine the function $f(x,y)=x^3+3xy^2-15x^2-15y^2+72x$ for maxima and minima.

8

1

(B) Attem	ipt any one (3 marks)	3
1)	Verify Rolle's theorem for the function $f(x)=x^2-3x+2$ in[1,2] If $y=x^3\log x$ find : y, using Leibnitz's theorem	
Q.3 (A) Attem	$y = x \log x$, $y_4 = x \log x + y_4 = x \log x + y_5 = x \log x + y_6 = x \log x \log x \log x + y_6 = x \log x$	8
1)	Obtain the reduction formula for $\int_{-\infty}^{\frac{\pi}{2}} \sin^n x dx$, hence evaluate $\int_{-\infty}^{\frac{\pi}{2}} \sin^8 x dx$.	
2)	Find the length of the curve x=asin θ , y=acos θ from θ =0 to θ = $\pi/4$	
3)	Evaluate: $\int e^x \cos x dx$	
(B) Attem	pt any one (3 marks)	3
1)	Find the area bounded by the parabola $x^2=4y$, X-axis and the lines x=1 and x=3	
2)	By using the properties of Definite Integral, Evaluate $\left =\int_{0}^{2}\left(\frac{x^{2}-4}{x^{2}+4}\right)dx$	
Q.4 (A) Attem	pt any two (4 marks each)	8
1)	By using the Adjoint method, find the inverse of the matrix A = $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$	
2)	Prove that $\begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix} = (x-y)(y-z)(z-x)$	
3)	Verify Cayley Hamilton theorem for the matrix: A= $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	
(B) Attem	ipt any one (3 marks)	2
	[2 3 4]	5
1)	Find the rank of the matrix $A = \begin{bmatrix} 4 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}$	
2)	Solve by Cramer's rule :	
	x+y+x=6; 2x+y-2z=-2; x+y-3z=-6	
Q.5 (A) Attem	pt any two (4 marks each)	8
1)	Find the particular solution of: (D ² +D-2)y=0, when x=0, y=1 and $\frac{dy}{dx} = 0$	
2)	From the differential equation for $y = A \cos(\log x) + B \sin(\log x)$	
3)	Solve $(x^3+y^3)dy=x^2y dx$	
(B) Attem	pt any one (3 marks)	3
1)	Solve $(1-x)dy-(1+y)dx = 0$. Also find the particular solution, if $y = 2$ when $x = 1$	
2)	Form the differential equation for $x^2+y^2-2ax = 10$	

Q.6 (A) Attempt any two (4 marks each)

1) Use Lagrange's Interpolation formula estimate y when x=4

х	0	2	5	6
Υ	7	11	17	19

- 2) Evaluate $\int_0^2 x^2 dx$ by using Trapezoidal rule (with h=0.2)
- 3) Estimate the missing value by using E and Δ from the following:

х	1	2	3	4	5
Υ	2	4	8	-	32

(B) Attempt any one (3 marks)

1) Given : x 1 3 4 f(x) 1 5 7 Assuming $\Delta^3 f(x) = 0$, find f(2), take h=1

2) Evaluate :
$$\left(\frac{\Delta^2}{E}\right)Sinx$$

3