N.B.: (1) Question No. 1 is compulsory.

Solve any three questions from the remaining five. Figures to the right indicate full marks. (2)

(3)

Assume suitable data if necessary and mention the same in answer sheet. (4)

Q.1		Attempt any 4 questions:	[20]
	(A)	Features of IC 555:	[20]
		Adjustable duty cycle, supply ratings, etc	[5]
	(B)	Precision rectifier can rectify the signal below 0.7 V too	[2+3]
		Waveforms.	[2+3]
	(C)	$Z_1 - Z_2 = K(X_1 - X_2)(Y_1 - Y_2)$	[5]
		Substituting the values of voltages at various terminals,	
	lan,		
		$Vo = \frac{(V_x^2 - V_y^2)}{10}$.	
	(D)	I U	
	(2)	Draw a neat circuit diagram and input-output waveforms of an inverting Schmitt trigger. Give the expressions for its threshold levels.	S 8
	(E)	Proof for duty Cycle= 33.33%.	
Q.2	(A)	11001101 daty Cycle—55.5576.	[5]
	()		[5+5]
		Phase comparator LPF Amplifier	
		fs comparator LPF Amplifier	
		+N f	
		Network VCO	
		(Freq. divider)	
		Output PLL • fo=Nfs	
		Fig. 9.12 Frequency multiplier using IC PLL	
		Working Principle.	
	(B)	AMV: Design of R1, R2, and C for adjustable duty cycle.	
2.3	(A)	Wien Bridge Oscillator:	[10]
			[4+4
		R ≤ Feedback	+2]
		1	
	-	+ A A	
		5	
		R > Voct	
		C SRV	
		Davidia Cara di Santa	
	-	Derivation for $F = 1/2\pi RC$.	
	(B)	Calculation of R and C. Derivation.	and the state of
1		Convacion.	[4+6]

Q.4	(A)	Design of Second order Butterworth non-inverting high pass filter to provide a cut-off frequency of 5 KHz and pass band gain of AF=2.	[10]
	(B)	A=1, B=0, C=1, D=0	[10]
		RCO is connected to LD through an inverter.	[10]
		- S CLK	
		-O CLR	
		- D LD	
	1	10 ENP	
		A QA	
		4 B OB 13	
		- C OC 12	
		6 D QD 13	
		RCO 175	
		Fig. 4(B)	
Q.5	(A)	Functional block diagram of LM317.	[3+3
		Explain the working of voltage regulator LM317.	+4]
	21.2	Design for an output voltage variable from 5 V to 10 V to handle maximum	
		load current of 500 mA.	
	(B)	$V_0 \longrightarrow R_2 = R_3$	[4+6]
		R_1	
		R_1	
		$R_{\mathrm{gain}} \longrightarrow V_{\mathrm{out}}$	
		R_2 R_3	
		Derivation for Vo= $(R3/R2)(1+2R1/R_{gain})(V2-V1)$.	
Q.6		Write short notes on: (Attempt any two)	[20]
2.0	(A)	Graph and explanation of Current fold-back protection in IC 723.	[4+6]
	(B)	Sample and Hold Circuit, Working, and waveforms.	[4+4]
	(-)	Sample and Motors, Working, and waveloning.	+2]
	(C)	Circuit of IC74181 Arithmetic Logic Unit and its explanation.	[5+5]
		======================================	[2,2]