Elementary Signals
Unit step signal

Ramp Signal

Unit impulse function: Amplitude of unit impulse approaches 1 as the width approaches zero and it has zero
value at all other values.

Sinusoidal signal: A continuous time sinusoidal signal is given by,

Exponential signal:
b. Find the fandamental period of the signal

x(t) = sin mmmm t) — cos(mt)
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£ If system matrix A= [-3, 1 ; -2, 0] find the sate transition matrix.
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Q2.a. Sketch the following signals for the given signal shown in Fig. 2

a) x() b)x(2t+5) c) x(2t) d) x(t/2) e) 2x(t)
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e. Test the given system for linearity, causality, stability, memory and time variant. -
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Q2.a. Sketch the following signals for the given signal shown in Fig. 2
a) x(-t) b) x(2t+5) c) x(2t) d) x(t/2) e) -2x(t)
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b. Find Inverse Laplace transform using convolution
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Now by applying convolution Theorem,
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Residue of G(2) at (z = e™%)

a

= —p~n
Therefore, x[n] =1 —e ™ **:n 20

b. State and Prove Parseval’s Theorem with respect to DTFT.
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For the special case when x; (n) = x; () for all n, we may write
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We know that LHS of the above equation is the encrgy E, of the discrete-time signal
x(n). Hence analogoys to the way we interpreted 1X(f)|? in the case of wm?nr:.n
theoren, for continuous-time Fouriér transform, here also, we call |X mm?_u_ it as
Energy spectral density of the signal x(n) and denote it by S, (). Therefore,
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Where,a=2, b=15 ¢=-2, d =25, ¢ = 3, f =4and g = 05
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Quput equation y[n] is formed by equating incoming signals of output node point as shown
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Q5.a Determine DTFS for the sequence x(n)= cos*((n/8)n)
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The symmetry property of a linear-phase FIR filter can be used to reduce the number of the required
multiplications.

The main advantage of the cascade structure is its smaller sensitivity to the coefficient quantization.

We can use the #f2sos command to rewrite the system function of a FIR filter as the product of second-order
sections; however, these second-order sections are not necessarily linear-phase. To have a cascade of linear-
phase elements, we need to group the zeros of the transfer function appropriately.

Q6. Write short note on any two:

a. Relation of ESD, PSD with auto-correlation






2. Energy Spectral Density (ESD)

o Defined as U, (f) = | X(f}>

o Measures the distribution of signal energy E == [ (2)|2dt = [ €. (f)df over frequency.

» Properties of ESD include ¥, (f) = 0, ¥.(—J) = ¥,(f) for £(2) real, and for 2-(f} input to a
filter with frequency respense H{f), the filter output y(t) has ESD 9,(f) = |H{f)*@z(f).

3. Autocorrelation of Energy Signals
¢ Defined for real signals as R (r) = [ 2(t)z(t — r)dt = z(r) = 2{—7).
e Measures the similarity of a signal with a delayed version of itself.
o Autocorrelation defines signal energy: E = R,(0).
o Since |R.(7)| € R-{0), can use autocarrelation for sigual synchronization.
e The antocorrelation is symmetric: Ry(7) = Ru(—7}
e The autocorrelation and ESD are Fourier Transform pairs: R:(7) < ¥5(f).

4. Power Spectral Density (PSD)

o Power signals have infinite energy: Fowrier transform and ESD may uot exist.

« Power signals meed altemate spectral density definition with similar properties as ESD.

o Can obtain ESD for a power signal #(¢) that is time windowed with window size 27,

e PSD defined as the normalized limit of the ESD for the windowed signal £7(2): Se(f) =
limr oo Mufmk.n.AHv_m.

» PSD measures the distribution of signal power P = lirx 55 [ ler(t)2dt = [ S=(f)df
over frequeny domain,

5. Properties of PSD

» Whﬁ.ﬂu >0
¢ S:{—f) = S:A{)

6. Filtering and Modulation of Power Signals:

e Let z{t) be a power sigaal with PSD S:(f).

o If z{t) is input to a filter with frequency response H{f), then the filter output y(t) has
PSD S,(f) = |H(f32S:A]).

o If $:(f) is bandlimited with bandwidth B << [, then for z{1) = 2(t) cos(2=2f.1), 5.{f) =
25[S2(S ~ fo) + S=(F + [}

ROC in Z-Transform and Laplace Transform
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Using feedforward control the performance of control systems can be enhanced greatly.

Process variables such as pressure, level, flow, temperature are interrelated and so one variable may
affect another as a disturbance in the process. Feedforward system measure important disturbance
variables and take corrective action before they upset the process.

Here the setpoint is fixed in the feedforward controller after doing little complex mathematical derivations.
The feedforward controller determines the needed change in the manipulated variable, so that, when the
effect of the disturbance is combined with the effect of the change in the manipulated variable, there will
be no change in the controlled variable at all. The disturbance is measured at the input side of the
process and the manipulating variable also, so the controlling process is done before a disturbance
affects the process.






