(2 ½ Hours)

[Total Marks:75

N.B.: (1) All questions are compulsory

- (2) Figures to the right indicate full marks.
- (3) Use of logarithmic table/ non-programmable calculator is allowed.
- (4) Answers to both the sections should be written in separate answer books and tied together.

Physical Constants N=6.022x10²³ k=1.38x10⁻²³K⁻¹ F= 96500 C R= 8.314 J mol⁻¹ K⁻¹ h= 6.626x10⁻³⁴Js C= 3.0X10⁸ ms⁻¹ π = 3.142

$\frac{2.303 \text{ RT}}{\text{F}} = 0.0592$ at 298 K

SECTION-I

1.	1. Attempt any three of the following:-			
	(A)	(i) Define and explain the orgin of dipole moment.(ii) Explain how dipole moment helps to identify ortho, meta and para isomers.	2 3	
	(B)	 (i) State and explain the rule of mutual exclusion with the help of CO₂ molecule (ii) Mention the limitations of rotational spectra. 	3 2	
٠	(C)	What is meant by zero point energy? The force constant of HF bond is 970Nm ⁻¹ . Calculate the zero point energy.	5	
	(D)	With respect to R-branch lines in vibrational rotational spectra, answer the following:-	5	
		(i) Derive the expression for its wave number.		
		(ii) State the expression for the spacing between two such successive lines.		
		(iii) Qualitatively sketch the R- branch lines for the first four transitions and name them.		
	(E)	How does basic quantum theory explain the Raman effect?	5	
	(F)	The frequency of separation of successive lines in the rotational spectrum of CO molecule is 382.4m ⁻¹ . Calculate the moment of inertia and the bond length.	5	

[TURN OVER]

5

5

5

5

5

5

4

- 2. Attempt any three of the following -
 - (A) Find the emf of the following cell at 298 K.

$$E^{\circ}_{Cl_2}$$
, $c_l = 1.36V$

$$E_{Al+3/Al} = -166V$$

(B) Derive an expression for emf of the following cell.

$$\Theta Ag_{(s)} \mid AgCl_{(s)}, HCl \mid HCl, AgCl_{(s)} \mid Ag^{\oplus}$$

- (C) Explain the origin of liquid junction potential. How is it eliminated?
- (D) What are galvanic cells? Explain any four types of ion-specific electrodes with suitable example.
- (E) Calculate the mean activity coefficient of 0.02m KCl in 0.002m K₂SO₄. The constant A=0.509 at 298 K for water.
- (F) What are gas concentration cells? Derive an expression for emf of gas concentration cell reversible to cation.
- 3. (A) Choose the correct answer.
 - (a) In -plane bending vibrations are classified as _____.
 - (i) Rocking and Wagging
 - (ii) Scissering and Rocking
 - (iii) Scissoring and Wagging
 - (b) For Stoke's line____
 - (i) $v_i > v$
 - (ii) $v_i = v$
 - (iii) $v_i < v$
 - (c) In pure rotational spectra, B=

(i)
$$B = \frac{h}{8\pi Ic}$$

(ii)
$$B = \frac{h}{8\pi^2 Ic}$$

(iii)
$$B = \frac{h^2}{8\pi^2 Ic}$$

QP Code: 77104

3

		(d)	Total degrees of freedom in CO ₂ molecule is			
			(i) 9 (ii) 6 (iii) 5			
			OR			
	(A)	State who				
(A) State whether True or False:(p) Bending vibration requires less energy than stretching vibration						
		(q)	The rotational constant B has lesser value for ¹² C ¹⁶ O than			
			¹³ C ¹⁶ O.			
		(r)	Homopolar molecules give rise to rotational spectra.			
		(s)	The molecule of BF ₃ has zero dipole moment.			
	(B)	Choose t	he correct answer :-			
,	` '	(a)	The value of E°cell in concentration cells is			
			(i) Zero			
			(ii) Positive			
			(iii) Negative			
		(b)	Pb PbSO ₄ , SO ₄ ²⁻ is reversible to			
	•	(*)	(i) Cation			
	,		(ii) anion			
			(iii) both			
		()				
		(c)	The expression for the activity of uni-trivalent electrolyte is			
			(i) 4 m ⁴ r ⁴ (ii) 27m ⁴ r ⁴			
			(ii) 27 iii (iii) $27 \text{ m}^3 \text{ r}^3$			
	٠		(iii) 27iii 1			
		(d)	[©] Ag AgNO ₃ AgNO ₃ Ag [⊕] is an example of			
	٠		$\binom{a_1}{a_2}$			
			(i) electrode concentration cell			
			(ii) chemical cell			
			(iii) Electrolyte concentration cell			
	(B)	State who	OR ether True or False :			
	(1)	(p)	The activity of $CaCl_{2}$ (m=0.5, r = 0.9) is 0.3645.	4		
		(p)	Saturated calomel elestrode is an example of redox electrode			
		(r)	When metals are dipped into their salt solutions they enter			
		• •	the solution in form of cations, This is known as electronation			
		(s)	The polarity of cathode in galvanic cells is positive.			

QP Code: 77104

4

SECTION-II

Attempt any three of the following:-												
(A)	Give an account of the following with suitable examples.	5										
	(i) principal axis and subsidiary axes (ii) Identity.	J										
(B)		5										
		5										
	molecule with neat diagrams.	J										
(D)	Draw a neat labelled MO diagram for BeH, molecule. Give its structur											
	and magnetic property.	5										
(E)												
		5										
(F)	What is doping? Explain n-type semiconductor with suitable diagrams.	5										
Attemp	t any three of the following -											
(A)	What are Lattice Parameters? Derive a relationship between lattice	5										
	0.68.											
(C) For a face centered cubic (fcc) lattice. Calculate -												
(i) Number of atoms per unit cell (fcc)(ii) Atomic radii (r) of a metal with unit length of 3.9 A°, crystallizing in fcc lattice.												
							(D) Metal has fcc structure and its atomic radii is 138 pm. Calculate the					
							lattice constant (a) and density of the metal. Molar (M) of metal is 195					
and Avogadros number (N) is 6.022x10 ²³ mol ⁻¹ .												
(E) With suitable example, explain Schottky defect in ionic solids.												
(F)	With suitable example, explain Schottky defect in ionic solids. Explain the terms:											
(i) Superconducting Transition temperature (Tc)												
	(ii) Meissner's Effect											
٠	•											
(A)	Select and write the most appropriate answer	4										
	<u>-</u>											
	(b) Centre of inversion is absent inmolecule											
	(i) SF_6 (ii) HCN (iii) C_6H_6											
	(A) (B) (C) (D) (E) (F) Attemp (A) (B) (C) (D) (E) (F)	 (A) Give an account of the following with suitable examples. (i) principal axis and subsidiary axes (ii) Identity. (B) Discuss the point groups assigned to diatomic linear molecules. (C) Explain the symmetry elements and assign a point group in NH₃ molecule with neat diagrams. (D) Draw a neat labelled MO diagram for BeH₂ molecule. Give its structure and magnetic property. (E) Write the wave equations for the formation of molecular orbitals in H₂O molecule. (MO diagram not expected). (F) What is doping? Explain n-type semiconductor with suitable diagrams. Attempt any three of the following - (A) What are Lattice Parameters? Derive a relationship between lattice constant (a) of a cubic crystal and density of the crystal material. (B) Show that packing density for body centered cubic (bcc) lattice is 0.68. (C) For a face centered cubic (fcc) lattice. Calculate - (i) Number of atoms per unit cell (fcc) (ii) Atomic radii (r) of a metal with unit length of 3.9 A°, crystallizing in fcc lattice. (D) Metal has fcc structure and its atomic radii is 138 pm. Calculate the lattice constant (a) and density of the metal. Molar (M) of metal is 195 and Avogadros number (N) is 6.022x10²³ mol⁻¹. (E) With suitable example, explain Schottky defect in ionic solids. (F) Explain the terms: (i) Superconducting Transition temperature (Tc) (ii) Meissner's Effect (A) Select and write the most appropriate answer. (a) The angle of rotation for C₃ axis is										

QP Code: **77104**

5

•	(c)	BCl, molec	ule belongs	to	point g	group.		
		(i)	$D_{\infty h}$	(ii)		(iii)	D_{3h}	
	(d)	Water mole	cule is not	r	nolecule.			
		(i)	angular _	(ii)	linear	(iii)	triatomic	
			O	R				
(A) State	e wh	ether the follo	owing staten	nents ar	e True or	False:		
((p) Electrical conductivity of metal increases with rise in temperature.						4	
 (q) The collection of very closely spaced energy levels is called energy band. 								
	 (r) The semiconductor obtained by heating an insulator is called intrinsic semiconductor. 							
(H ₃ + ion molec bond.	cule can be d	escribed	d by a three	e center t	hree electron	
(B) Sele		nd write the a		simple		unit cel	l is	3
		(i)	1	(ii)	2	(iii)	4	
	(b)	Frenkel def	ect occurs in	1	•			
		(i)	alkali halid	es				
		(ii)						
•		(iii)	alkaline ear	rth oxide	es			
	(c)	High tempe cooling.	rature super	conduct	tors (HTS	C) requir	efor	
		(i)	liquid Heliu	ım				
		(ii)	liquid Hydr	ogen	_			
		(iii)	liquid Nitro	gen				
(-)	_		OR					
		whether the f	_					3
(The atomic pa		r (APF)	for hexag	onal clos	se packed	
,		lattice is 0.74						
((q) In Frenkel defect, missing atom occupies an interstitial position							
between the lattice points. (r) The carbon atoms in Fullerene are sp ³ hybridised.								
((*)	ine caroon a		a	cop myor	. raibou.		