[Total Marks: 100

QP Code: 75999

- N.B.: (1) All questions are compulsory.
 - (2) Figures to the right indicate full marks.
 - (3) Use of non programmable calculator is allowed.

Useful constants:-

c =
$$2.998 \times 10^8 \text{ ms}^{-1}$$

h = $6.626 \times 10^{-34} \text{ Js}$
R = $8.314 \text{JK}^{-1} \text{mol}^{-1}$
 $m_e = 9.110 \times 10^{-31} \text{kg}$
 $N_A = 6.022 \times 10^{23} \text{mol}^{-1}$
 $e = 1.602 \times 10^{-19} \text{ C}$
 $k = 1.3811 \times 10^{-23} \text{ JK}^{-1}$
 $leV = 8.06 \times 10^3 \text{ cm}^{-1}$
 $1J = 6.24 \times 10^{18} \text{ eV}$

1. Attempt any five of the following:-

- 20
- (a) State the third law of thermodynamics and show how it can be used to determine absolute entropies of liquid.
- (b) Obtain an expression for free energy of mixing in terms of mole fraction.
- (c) What is corrosion? Explain the role of different type of inhibitors to prevent corrosion.
- (d) Explain the basic principle of zone refining technique.
- (e) Which of the following are eigen functions of the operator $\frac{\partial^2}{\partial x^2}$? Find the eigen value for the same
 - (i) $\sin 3x$ (ii)
- (f) Show that the probability of finding a free particle in limitless space at all points is the same.
- (g) Explain the following terms:-
 - (i) Steric factor
 - (ii) Rate determining step

TURN OVER

ID-Con. 1216-17.

8249BC3DB426BA1554D464856A083D32

(h) Predict the effect of ionic strength on the rate constants of the following reactions:-

Justify your answer

- (i) $S_2O_8^{2-} + 2I^- \rightarrow Products$
- (ii) $CH_3COOC_2H_5 + OH^- \rightarrow Products$
- (iii) $\operatorname{Co}(\operatorname{NH}_3)_5 \operatorname{Br}^{2+} + \operatorname{OH}^- \to \operatorname{Products}$
- (iv) $H_2O_2 + 2H^+ + 2Br^- \rightarrow Products$
- 2. (a) Write the expression for vibrational partition function and explain the 7 terms involved in it. Derive the mathematical expression of partition function from Boltzman's distribution law.

OR

- (a) What is meant by exact differentials? Give its characteristics.
- (b) 4 litres of an ideal gas (mol.wt = 16) and 1 litre of another ideal gas (mol. wt. = 40) each at 1 atm and 300K are mixed isothermally in vessel of 3 liters capacity. Find ΔG_{mix} , ΔH_{mix} and ΔS_{mix} .
- (c) Describe Joule Thomson experiment. Derive an expression for Joule 7 Thomson coefficient and give its one application.

OF

- (c) What is fugacity? How is it related to activity and activity coefficient? 7 Describe the graphical method of its determination.
- 3. (a) With suitable diagram for three component system, explain the following 7 terms:-
 - (i) Binodal curve
 - (ii) Plait point and
 - (iii) Tie line

OR

- (a) What is adsorption isotherm? Derive an expression for Gibbs adsorption 7 isotherm.
- (b) Calculate the mean ionic activity coefficient of cesium chloride in a solution 6 containing 0.01m cesium chloride and 0.01 m aluminium chloride at 298K.

 [Given A = 0.509 for water at 298K]
- (c) State Debye-Huckel limiting law. Explain the terms involved. How is it verified experimentally for different electrolytes?

7

7

7

OR

- (c) Explain different types of phase transitions with suitable example of each 7 type.
- 4. (a) Starting with the equation

$$\left(\frac{\partial^2 \psi}{\partial x^2}\right)_{t} = \frac{1}{c^2} \left(\frac{\partial^2 \psi}{\partial t^2}\right)_{x}$$

set up the time independent Schrodinger wave equation. Using the method of seperation of variables, show that it can be expressed as three equations containing one variable each.

OR

- (a) Set up and solve the Huckel secular determinant equation for buta-1, 3-diene. Show HMD energy levels.
- (b) Calculate the spacing between lowest and highest energy level for particle $A \text{ (mass} = 10^{-30} \text{ kg)}$ in one dimension box of length 10^{-10}m and particle B of mass 10^{-3}kg in one dimension box of length 10cm. State giving reasons for which particle quantisation is observed.
- (c) The radial wave function of 2s orbital of a hydrogen atom is given by 7

$$R_{20} = N \left[z - \frac{r}{a_0} \right] e^{-\frac{r}{2a_0}}$$

Where N is constant

- (i) Qualitatively sketch the radial distribution curve.
- (ii) Determine the distance of node from the nucleus in terms of a_0

OR

- (c) Explain the terms
 - (i) Legendre functions
 - (ii) Odd-Even functions

For a rigid rotor, write the expression for energy level. Calculate the energy for J = 0, 1, 2, 3

[TURN OVER

5. (a) What are enzyme catalysted reactions? Give an example. On the basis 7 of Michaelis-Menten's mechanism show that the rate of an enzyme catalysed reaction depends on the concentration of the substrate.

OR

- (a) Why are fast reactions not studied by usual laboratory techniques? 7 Describe flash photolysis technique to study such reactions.
- (b) The specific reaction rate for the first order decomposition of ethylene 6 oxide into CH₄ and CO follows the equation

$$\log_{10} k \left(s^{-1} \right) = 14.34 - 1.25 \times 10^4 \, \text{K} / \text{T}$$

Calculate:

- (i) Energy of activation
- (ii) Frequency factor and
- (iii) Specific reaction rate at 600K.
- (c) What is steady state treatment? Apply it to obtain the rate law of the 7 decomposition of ozone.

OR

(c) What are the factors affecting the rate of the reaction in solution? Derive 7 the following reaction:-

$$\ln k = \ln k_0 + 1.018 z_A z_B \sqrt{I}$$

Where the term have the usual meaning.