
PAPER SOLUTION FOR Q.P.CODE : 22565

Q1) A)

Q1) B)

Q1) C)

Macros. A macro is an extension to the basic ASSEMBLER language. They provide a means for

generating a commonly used sequence of assemblerinstructions/statements. The sequence of

instructions/statements will be coded ONE time within the macro definition.

SYNTAX: MACRO{

 }

 ENDM

Q1) D)

The Current Program Status Register is a 32-bit wide register used in the ARM architecture to record

various pieces of information regarding the state of the program being executed by the processor and

the state of the processor. This information is recorded by setting or clearing specific bits in the

register.

ARM CPSR format

The top four bits (bits 31, 30, 29, and 28) are the condition code (cc) bits and are of most interest to

us. Condition code bits are sometimes referred to as "flags". The lowest 8 bits (bit 7 through to bit 0)

store information about the processor's own state. The remaining bits (i.e. bit 27 to bit 8) are currently

unused in most ARM processors.

The N bit is the "negative flag" and indicates that a value is negative.

The Z bit is the "zero flag" and is set when an appropriate instruction produces a zero result.

The C bit is the "carry flag" but it can also be used to indicate "borrows" (from subtraction

operations) and "extends" (from shift instructions (LINK)).

The V bit is the "overflow flag" which is set if an instruction produces a result that overflows and

hence may go beyond the range of numbers that can be represented in 2's complement signed format.

For completeness, the other state bits are:

The I and F bits which determine whether interrupts (such as requests for input/output) are enabled or

disabled.

The T bit which indicates whether the processor is in "Thumb" mode, where the processor can

execute a subset of the assembly language as 16-bit compact instructions. As Thumb code packs

more instructions into the same amount of memory, it is an effective solution to applications where

physical memory is at a premium.

The M4 to M0 bits are the mode bits. Application programs normally run in user mode (where the

mode bits are 10000). Whenever an interrupt or similar event occurs, the processor switches into one

of the alternative modes allowing the software handler greater privileges with regard to memory

manipulation.

Q1)E) EA

The 8051 family members, such as the 8751/52, 89C51/52, or DS89C4xO, all come with on-chip

ROM to store programs. In such cases, the EA pin is connected to Vcc. For family members such

as the 8031 and 8032 in which there is no on-chip ROM. code is stored on an external ROM and

is fetched by the 8031/32. Therefore, for the 8031 the EA pin must be connected to GND to

indicate that the code is stored externally. EA. which stands for “external access,” is pin number

31 in the DIP packages. It is an input pin and must be connected to either Vcc or GND. In other

words, it cannot be left unconnected.

the 8031 uses this pin along with PSEN to access programs stored in ROM memory located

outside the 8031. In 8051 chips with on-chip ROM, such as the 8751/52, 89C51/52, or

DS89C4xO, EA is connected to Vcc,

PSEN

This is an output pin. PSEN stands for “program store enable.” In an 8031-based system in

which an external ROM holds the program code, this pin is connected to the OE pin of the ROM.

ALE

ALE (address latch enable) is an output pin and is active high. When connecting an 8031 to

external memory, port 0 provides both address and data. In other words, the 8031 multiplexes

address and data through port 0 to save pins. The ALE pin is used for demultiplexing the address

and data by connecting to the G pin of the 74LS373 chip.

Q2) A)

Q2) B) Pipe:

1. A message pipe is an inter-process task communication tool used for inserting, deleting

messages between two given interconnected task or two sets of tasks.

2. In a pipe there are no fixed numbers of bytes per message but there is an end-point. A

pipe can therefore be inserted limited number of bytes and have a variable number of

bytes per message between initial and final pointers.

3. Pipes are unidirectional i.e. one thread or task inserts into it and the other one reads and

deletes from it.

4. The read method of a pipe has no knowledge of where the write started, the interacting

tasks must therefore share start and end locations as the messages are inserted into the

pipe.

Mailbox:

1. A message mailbox, also called a message exchange, is typically a pointer-size variable.

Through a service provided by the kernel, a task or an ISR can deposit a message (the

pointer) into this mailbox.

2. One or more tasks can receive messages through a service provided by the kernel.

3. Both the sender and receiving task agree on what the pointer is actually pointing to.

4. A waiting list is associated with each mailbox in case more than one task wants to receive

messages through the mailbox. A task desiring a message from an empty mailbox is

suspended and placed on the waiting list until a message is received

5. Typically, the kernel allows the task waiting for a message to specify a timeout. If a

message is not received before the timeout expires, the requesting task is made ready to

run, and an error code (indicating that a timeout has occurred) is returned to it

6. When a message is deposited into the mailbox, either the highest priority task waiting for

the message is given the message (priority-based), or the first task to request a message is

given the message (First-In First-Out, or FIFO).

Figure shows a task depositing a message into a mailbox. Note that the mailbox is represented by

an I-beam and the timeout is represented by an hourglass. The number next to the hourglass

represents the number of clock ticks the task will wait for a message to arrive.

Message queue:

1. A message queue is used to send one or more messages to a task. A message queue is

basically an array of mailboxes. Through a service provided by the kernel, a task or an

ISR can deposit a message (the pointer) into a message queue.

2. One or more tasks can receive messages through a service provided by the kernel. Both

the sender and receiving task or tasks have to agree as to what the pointer is actually

pointing to.

3. The first message inserted in the queue is the first message extracted from the queue

(FIFO). In addition, to extract messages in a FIFO fashion, RTOSes allows a task to get

messages Last-In-First-Out (LIFO).

4. A waiting list is associated with each message queue, in case more than one task is to

receive messages through the queue.

5. The kernel allows the task waiting for a message to specify a timeout. If a message is not

received before the timeout expires, the requesting task is made ready to run, and an error

code (indicating a timeout has occurred) is returned to it.

6. A task desiring a message from an empty queue is suspended and placed on the waiting

list until a message is received.

7. When a message is deposited into the queue, either the highest priority task, or the first

task to wait for the message is given the message.

Figure shows an ISR depositing a message into a queue. Note that the queue is represented

graphically by a double I-beam. The “10” indicates the number of messages that can accumulate

in the queue. A “0” next to the hourglass indicates that the task will wait forever for a message to

arrive.

Q3) A)

data segment

 num db -3,1,-5,6,-7,9,'#'

 p_cnt db 0h

 n_cnt db 0h

data ends

code segment

 assume ds:data,cs:code

start:

 mov ax,data

 mov ds,ax

 lea si,num

main:

 cmp num[si],0h

 jg pos

 inc si

 add n_cnt,01h

 cmp num[si],'#'

 je exit

 jmp main

pos:

 add p_cnt,01h

 inc si

 cmp num[si],'#'

 je exit

 jmp main

exit:

 mov bl,p_cnt

 mov cl,n_cnt

 mov ax,4c00h

 int 21h

code ends

 end start

Q3) B) Processor modes

There are seven processor modes:

Mode

Bits Description Family

User usr %10000 Normal program execution, no privileges All

FIQ fiq %10001 Fast interrupt handling All

IRQ irq %10010 Normal interrupt handling All

Supervisor svc %10011 Privileged mode for the operating system All

Abort abt %10111 For virtual memory and memory protection ARMv3+

Undefined und %11011 Facilitates emulation of co-processors in hardware ARMv3+

System sys %11111 Runs programs with some privileges ARMv4+

User mode

This is the mode in which user application tasks should run. It has access to the base register set,

and no privileges.

FIQ mode

The ARM processor supports two types of interrupt handling. There is the regular type of

interrupt, and there is this, the fast interrupt. The difference is that fast interrupts can interrupt

regular ones.

FIQ mode provides a large number of shadow registers (R8 to R14, CPSR) and is useful for

things that must complete extremely quickly or else data loss is a possibility. The original

(8MHz) ARM used FIQ for networking and floppy disc which had to be serviced as soon as data

was available. Modern ARMs would probably use FIQ for high speed DMA-style transfers.

IRQ mode

This is the other, regular, interrupt mode. Only R13, R14, and CPSR are shadowed. All

interrupts that don't require extreme speed (clock ticks, screen VSync, keyboard, etc...) will use

IRQ mode.

SVC mode

This is the privileged mode reserved for the operating system. R13, R14, and CPSR are

shadowed.

OS calls (SWI) set the processor to SVC mode, and then the processor jumps to &8 (or

&FFFF0008).

After system reset, the ARM begins processing at address &0 (or &FFFF0000 if high vectors

configured), with interrupts disabled and in SVC mode. This address is the location of the Reset

Vector, which should be a branch to the reset code.

Abort mode

An abort is signalled by the memory system as a result of a failure to load either an instruction

(Prefetch Abort) or data (Data abort).

A Prefetch Abort occurs if the processor attempts to execute a failed instruction load (note - no

abort happens if the processor fails to load an instruction, but said instruction is not executed due

to a branch or suchlike).

In ARMv5 a Prefetch Abort can be generated programatically by the use of

the breakpoint instruction.

A Data Abort occurs if the processor attempts to fetch data but the memory system says it is

unable to. The abort occurs before the failed instruction alters the processor state.

https://www.heyrick.co.uk/armwiki/SWI
https://www.heyrick.co.uk/aw/index.php?title=BKPT&action=edit&redlink=1

Undefined mode

When an undefined instruction is encountered, the ARM will wait for a coprocessor to

acknowledge that it can deal with the instruction (if in co-processor instruction space). If no

coprocessor responds, or the instruction is one that is not defined, then the undefined instruction

vector is taken. This will branch to &4 (or &FFFF0004) to allow such things as software

emulation of coprocessors, or other extensions to the instruction set.

System mode

A problem with the original design of the ARM is that as processor vectors modify R14 with the

return address, an exception handler (for example, IRQ) that calls subroutines cannot act in a re-

entrant way; for if the IRQ handler is taken while in the IRQ handler and having called a

subroutine to handle the (first) IRQ, the return address in R14 will be trashed by the second IRQ

exception.

Q4) A)

INTERFACING DC MOTOR- 8051

A DC motor runs with the help of Direct Current. It produces torque by using both electricity and

magnetic fields. The DC motor has rotor, stator, field magnet, brushes, shaft, commutator. The

DC motor requires more current to produce initial torque than in running state.Interfacing the DC

motor directly to 8051 microcontroller is not possible. Because the DC motor uses large current

(200-300mA in small DC motors) to run. When this current flow into the 8051 microcontroller,

the IC will get damaged. Therefore we use a driving circuit with an opto isolator and a L298

Dual H-Bridge driver. The opto-isolator provides additional protection to the microcontroller.

Continuous, sustained operation of the motor will cause the L293 Dual H-Bridge driver to

overheat. So, a suitable heat sink must be used.

Assembly Language program

Q4)B) priority inversion is a problematic scenario in scheduling in which a high priority task is

indirectly preempted by a lower priority task effectively "inverting" the relative priorities of the

two tasks.

This violates the priority model that high priority tasks can only be prevented from running by

higher priority tasks and briefly by low priority tasks which will quickly complete their use of a

resource shared by the high and low priority tasks.

A priority ceiling

With priority ceilings, the shared mutex process (that runs the operating system code) has a

characteristic (high) priority of its own, which is assigned to the task locking the mutex. This

ORG 0000H Remarks

MAIN CLR P1.0

 CLR P1.1

 CLR P1.2

 SETB P2.7

MONITOR

 SETB P1.0 Enable the H-bridge

driver

 JNB P2.7 CLOCKWISE

 CLR P1.1 01 is for Counter

clockwise

 SETB P1.2

 SJMP MONITOR

CLOCKWISE SETB P1.1 10 is for clockwise

 CLR P1.2

 SJMP MONITOR

https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Task_(computing)
https://en.wikipedia.org/wiki/Preemption_(computing)
https://en.wikipedia.org/wiki/Priority_ceiling
https://en.wikipedia.org/wiki/Mutual_exclusion

works well, provided the other high priority task(s) that tries to access the mutex does not have a

priority higher than the ceiling priority.

Priority inheritance

Under the policy of priority inheritance, whenever a high priority task has to wait for some

resource shared with an executing low priority task, the low priority task is temporarily assigned

the priority of the highest waiting priority task for the duration of its own use of the shared

resource, thus keeping medium priority tasks from pre-empting the (originally) low priority task,

and thereby affecting the waiting high priority task as well. Once the resource is released, the

low priority task continues at its original priority level.

Random boosting

Ready tasks holding locks are randomly boosted in priority until they exit the critical section.

This solution is used in Microsoft Windows.

Q4)C)

MUL and MLA

Multiply and multiply-accumulate (32-bit by 32-bit, bottom 32-bit result).

Syntax

MUL{cond}{S} Rd, Rm, Rs

MLA{cond}{S} Rd, Rm, Rs, Rn

where:

cond is an optional condition code (see Conditional execution).

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation

Rd is the destination register.

Rm, Rs, Rn are registers holding the operands.

Do not use r15 for Rd, Rm, Rs, or Rn.

Rd cannot be the same as Rm.

Usage

The MUL instruction multiplies the values from Rm and Rs, and places the least significant 32 bits of the

result in Rd.

The MLA instruction multiplies the values from Rm and Rs, adds the value from Rn, and places the least

significant 32 bits of the result in Rd.

Examples

 MUL r10,r2,r5

https://en.wikipedia.org/wiki/Priority_inheritance
https://en.wikipedia.org/wiki/Random_boosting
https://en.wikipedia.org/wiki/Microsoft_Windows
http://infocenter.arm.com/help/topic/com.arm.doc.dui0231b/Chdehgih.html

UMULL, UMLAL, SMULL and SMLAL

Unsigned and signed long multiply and multiply accumulate (32-bit by 32-bit, 64-bit accumulate or

result).

Syntax

Op{cond}{S} RdLo, RdHi, Rm, Rs

where:

Op is one of UMULL, UMLAL, SMULL, or SMLAL.

Q5)A)

The barrel shifter is a functional unit which can be used in a number of different circumstances. It
provides five types of shifts and rotates which can be applied to Operand2.

LSL – Logical Shift Left

Example: Logical Shift Left by 4.

Equivalent to << in C.

LSR – Logical Shift Right

Example: Logical Shift Right by 4.

Equivalent to >> in C. i.e. unsigned division by a power of 2.

ASR – Arithmetic Shift Right

Example: Arithmetic Shift Right by 4, positive value.

Example: Arithmetic Shift Right by 4, negative value.

Equivalent to >> in C. i.e. signed division by a power of 2.

ROR – Rotate Right

Example: Rotate Right by 4.

Bit rotate with wrap-around.

RRX – Rotate Right Extended

Example: Rotate Right Extended.

33-bit rotate with wrap-around through carry bit.

Q5) B)

1. Immediate addressing mode:

In this type, the operand is specified in the instruction along with the opcode. In simple way, it

means data is provided in instruction itself.

Ex: MOV A,#05H -> Where MOV stands for move, # represents immediate data. 05h is the data.

It means the immediate date 05h provided in instruction is moved into A register.

2.Register addressing mode:

Here the operand in contained in the specific register of microcontroller. The user must provide

the name of register from where the operand/data need to be fetched. The permitted registers are

A, R7-R0 of each register bank. Ex: MOV A,R0-> content of R0 register is copied into

Accumulator.

3. Direct addressing mode:

In this mode the direct address of memory location is provided in instruction to fetch the

operand. Only internal RAM and SFR's address can be used in this type of instruction.

Ex: MOV A, 30H => Content of RAM address 30H is copied into Accumulator.

4. Register Indirect addressing mode:

Here the address of memory location is indirectly provided by a register. The '@' sign indicates

that the register holds the address of memory location i.e. fetch the content of memory location

whose address is provided in register.

Ex: MOV A,@R0 => Copy the content of memory location whose address is given in R0

register.

5. Indexed Addressing mode:

This addressing mode is basically used for accessing data from look up table. Here the address of

memory is indexed i.e. added to form the actual address of memory.

Ex: MOVC A,@A+DPTR => here 'C' means Code. Here the content of A register is added with

content of DPTR and the resultant is the address of memory location from where the data is

copied to A register.

Q5) C)

8051 ASSEMBLY LEVEL CODE TO FIND THE FACTORIAL OF GIVEN NUMBER

//GIVEN NUMBER STORED IN R1 REGISTER

//RESULT IS STORED IN R7 REGISTER

ORG 0000

MOV R1,#04

MOV R7,#01

LCALL FACT

MOV R7,A

FACT:

MOV A,R7

CJNE R1,#00,UP

SJMP UP1

UP:

MOV B,R1

MUL AB

DJNZ R1,UP

UP1:

RET

END

Q6)A)

1. Compiler

 A compiler is a computer program (or a set of programs) that transforms source code

written in a programming language (the source language) into another computer language

(the target language).

 Typically, from high level source code to low level machine code or object code.

2. Assembler

 An assembler translates assembly language programs into machine code. The output

of a assembler is called an object file, which contains a combination of machine instruction

as well as the data required to place these intstructions in memory.

3. Linker

 Linker is a computer program that links and merges various object files together in

order to make an executable file. All these files might have been compiled by separate

assembler.

 The major task of a linker is to search and locate referenced module/routines in a

program and to determine the memory location where these codes will be loaded making the

program instruction to have absolute reference.

4. Loader

 Loader is a part of operating system and is responsible for loading executable files

into memory and execute them.

 It calculates the size of a program (instructions and data) and create memory space

for it. It initializes various registers to initiate execution.

Q6) B)

Mode Encoding Syntax Description

Register 00/0 Rn Register contents.

Indexed 01/1 X(Rn) Value at address X+Rx; X is stored in the word

following the instruction.

Symbolic 01/1 ADDR Indexed mode x(PC) is used where x is the offset from

the PC to the label ADDR. So the value is stored at

address (x + PC)

Absolute 01/1 &ADDR Copy the contents of one address into the contents of

another address

Indirect Register 10/- @Rn Rn contains address of operand.

Indirect

Autoincrement

11/- @Rn+ Rn contains address of operand; afterwards, the

contents of Rn are incremented

Immediate 11/- #N N is a constant; it is stored in the word following the

instruction.

Q6) C)

scheduler is the part of the kernel responsible for deciding which task should be executing at any

particular time. The kernel can suspend and later resume a task many times during the task

lifetime.

The scheduling policy is the algorithm used by the scheduler to decide which task to execute at

any point in time. The policy of a (non real time) multi user system will most likely allow each

task a "fair" proportion of processor time.

Some commonly used RTOS scheduling algorithms are:

 Cooperative scheduling

 Preemptive scheduling

 Rate-monotonic scheduling

 Round-robin scheduling

 Fixed priority pre-emptive scheduling, an implementation of preemptive time

slicing

 Fixed-Priority Scheduling with Deferred Preemption

 Fixed-Priority Non-preemptive Scheduling

 Critical section preemptive scheduling

 Static time scheduling

https://en.wikipedia.org/wiki/Cooperative_Scheduling
https://en.wikipedia.org/wiki/Preemption_(computing)
https://en.wikipedia.org/wiki/Rate-monotonic_scheduling
https://en.wikipedia.org/wiki/Round-robin_scheduling
https://en.wikipedia.org/wiki/Fixed_priority_pre-emptive_scheduling
https://en.wikipedia.org/wiki/Time_slice
https://en.wikipedia.org/wiki/Time_slice

