
 SEM – III Computer Engineering                      Subject: Data Structures 

Choice Based Credit and Grading System (CBCGS) 

Note: Please note that this answer key is provided as a reference only. Any 

alternative solution which gives correct output should be considered equally valid.  

N.B:   (1) Question No.1 is compulsory 
          (2) Attempt any three questions of the remaining five questions 
          (3 Figures to the right indicate full marks 
          (4) Make suitable assumptions wherever necessary with proper justifications 
 
Q.1 (a) Explain ADT. List the Linear and Non-linear data structures with example   (5) 

ADT refers to an Abstract Data Type. This focuses on the behavior of a data structure rather than on 

any implementation details. 

 

Linear data structures- the data elements are organized in some sequence is called linear data 

structure. Here the various operations on a data structure are possible only in a sequence i.e. we 

cannot insert the element into any location of our choice. Examples of linear data structures are 

array, stacks, queue, and linked list. 

Non-Linear data structures -When the data elements are organized in some arbitrary function 

without any sequence, such data structures are called non-linear data structures. Examples of such 

type are trees, graphs. 

       (b) Explain B Tree and B+ Tree. (5) 

A B-tree is a generalized binary search tree, in which any node can have more than two children. 

Each internal node in a B-tree contains a number of keys. These keys separate the values, and further 

forms the sub-trees. 

 
A B+ tree is an n-array tree with a node, which consists of a large number of children per node. The 

root may be a leaf or a node that contains more than two children. A B+ tree consists of a root, 

internal nodes and leaves. 

(c) Write a program to implement Binary Search on sorted set of Integers  (10) 

#include <stdio.h> 

#include <conio.h> 

main() 

{ 

    intarr[10], num, i, n , pos =-1, beg, end,mid, found =0; 



    clrscr (); 

    printf("\n Enter the number of elements in the array: "); 

    scanf ("%d", &n); 

    printf (" \n Enter the elements: "); 

  for(i=0;i<n;i++) 

  { 

      scanf("%d", &arr[i]); 

 } 

      printf("\n Enter the number that has to be searched: " ); 

      scanf ("%d", &num); 

      beg = 0, end = n-1; 

   while (beg <end) 

   { 

     mid= (beg+ end)/2; 

       if (arr[mid] == num) 

       { 

         printf("\n %dis present in the array at position = %d", num, mid); 

         found=1; 

         break; 

       } 

           if (arr[mid]>num) 

            { 

              end = mid-1; 

            } 

         else if (arr[mid] <num) 

        beg = mid+1; 

   } 

      if ( beg > end &&found == 0) 

      { 

         printf("\n %d DOESNOTEXIST IN THE ARRAY",num); 

      } 

          getch(); 

          return 0; 

} 
 

 

 
Q.2(a) Write a program to convert Infix expression into Postfix expression.   (10) 
#include<stdio.h> 

char stack[20]; 

int top = -1; 

void push(char x) 

{ 

stack[++top] = x; 

} 

char pop() 

{ 

if(top == -1) 

return -1; 

else 

return stack[top--]; 



} 

int priority(char x) 

{ 

if(x == '(') 

return 0; 

if(x == '+' || x == '-') 

return 1; 

if(x == '*' || x == '/') 

return 2; 

} 

 

main() 

{ 

charexp[20]; 

char *e, x; 

printf("Enter the expression :: "); 

scanf("%s",exp); 

    e = exp; 

while(*e != '\0') 

    { 

if(isalnum(*e)) 

printf("%c",*e); 

else if(*e == '(') 

push(*e); 

else if(*e == ')') 

        { 

while((x = pop()) != '(') 

printf("%c", x); 

        } 

else 

        { 

while(priority(stack[top]) >= priority(*e)) 

printf("%c",pop()); 

push(*e); 

        } 

e++; 

    } 

while(top != -1) 

    { 

printf("%c",pop()); 

    } 

} 

 
(b)Explain Huffman Encoding with an example      (10) 

Huffman’s algorithm is based on the idea that a variable length code should use the shortestcode words for 

the most likely symbols and the longest code words for the least likely symbols. Inthis way, theaverage 

Code length will be reduced. The algorithm assigns code words to symbols byconstructing a binary coding 

tree. Each symbol of the alphabet is a leaf of the coding tree. Thecode of a given symbol corresponds to the 

unique path from the root to that leaf, with 0 or 1 addedto the code for each edge along the path depending 

on whether the left or right child of a givennode occurs next along the path. 



 

Q.3 (a) Write a program to implement Doubly Linked List. Provide the following operations: (10) 

                  (i) Insert a node in the beginning 

                  (ii) Insert a node in the end. 

   (iii) Delete a node from the end 

(iv) Display the list 

#include<stdio.h> 

#include<conio.h> 

#include<stdlib.h> 

struct node 

{ 

struct node *previous; 

int data; 

struct node *next; 

}*head, *last;  

 

voidinsert_begning(int value) 

{ 

struct node *var,*temp; 

var=(struct node *)malloc(sizeof(struct node)); 

var->data=value; 

if(head==NULL) 

     { 

head=var; 

head->previous=NULL; 

head->next=NULL; 

last=head; 

     } 

else 

     { 

temp=var; 

temp->previous=NULL; 

temp->next=head; 

head->previous=temp; 



head=temp; 

     } 

}  

 

voidinsert_end(int value) 

{ 

struct node *var,*temp; 

var=(struct node *)malloc(sizeof(struct node)); 

var->data=value; 

if(head==NULL) 

     { 

head=var; 

head->previous=NULL; 

head->next=NULL; 

last=head; 

     } 

else 

     { 

last=head; 

while(last!=NULL) 

         { 

temp=last; 

last=last->next; 

         } 

last=var; 

temp->next=last; 

last->previous=temp; 

last->next=NULL; 

     } 

}    

 

intdelete_from_end() 

{ 

struct node *temp; 

temp=last; 

if(temp->previous==NULL) 

      { 

free(temp); 

head=NULL; 

last=NULL; 

return 0; 

      } 

printf("\nData deleted from list is %d \n",last->data); 

last=temp->previous; 

last->next=NULL; 

free(temp); 

return 0; 

}  

 

 

void display() 



{ 

struct node *temp; 

temp=head; 

if(temp==NULL) 

      { 

printf("List is Empty"); 

      } 

while(temp!=NULL) 

     { 

printf("-> %d ",temp->data); 

temp=temp->next; 

     } 

}  

 

int main() 

{ 

int value, i; 

head=NULL; 

printf("Select the choice of operation on link list"); 

printf("\n1.) insert at begning\n2.) insert at at end\"); 

printf("\n3.) delete from end\n4.) display list\n5.)exit"); 

while(1) 

    { 

printf("\n\nenter the choice of operation you want to do "); 

scanf("%d",&i); 

switch(i) 

          { 

case 1: 

                { 

printf("enter the value you want to insert in node "); 

scanf("%d",&value); 

insert_begning(value); 

display(); 

break; 

                 } 

case 2: 

                 { 

printf("enter the value you want to insert in node at last "); 

scanf("%d",&value); 

insert_end(value); 

display(); 

break; 

                 } 

case 3: 

                 { 

delete_from_end(); 

display(); 

break; 

                 } 

case 4: 

                 { 



display(); 

break; 

                 } 

case 5 : 

                 { 

exit(0); 

break; 

                 } 

          } 

    } 

printf("\n\n%d",last->data); 

display(); 

getch(); 

} 

 

      (b) Explain Topological sorting with example      (10) 

Topological sort: an ordering of the vertices in a directed acyclic graph, such that: 

If there is a path from u to v, then v appears after u in the ordering. 

Types of graphs: 

The graphs should be directed: otherwise for any edge (u,v)  

there would be a path from u to v and also from v to u,  

and hence they cannot be ordered. 

The graphs should be acyclic: otherwise for any two vertices u and v on a cycle  

u would precede v and v would precede u. 

The ordering may not be unique: 

 
V1, V2, V3, V4 and V1, V3, V2, V4 are legal orderings 

Algorithm 

1. Compute the indegrees of all vertices 

2. Find a vertex U with indegree 0 and print it (store it in the ordering) 

If there is no such vertex then there is a cycle  

and the vertices cannot be ordered. Stop. 

3. Remove U and all its edges (U,V) from the graph. 

4. Update the indegrees of the remaining vertices. 

5. Repeat steps 2 through 4 while there are vertices to be processed. 

 



 Indegree           

Sorted à    V1 V1,V2 V1,V2,V4 V1,V2,V4,V3 V1,V2,V4,V3,V5 

V1 0           

V2 1 0         

V3 2 1 1 0     

V4 2 1 0       

V5 2 2 1 0 0   

One possible sorting: V1, V2, V4, V3, V5 

Another sorting: V1, V2, V4, V5, V3 

Q.4 (a) Write a program to implement Quick sort. Show the steps to sort the given numbers: (10) 

  25, 13, 7, 34, 56,23,13,96,14,2 

#include <stdio.h> 

  

voidquick_sort(int[],int,int); 

int partition(int[],int,int); 

  

int main() 

{ 

    int a[50],n,i; 

    printf("How many elements?"); 

    scanf("%d",&n); 

    printf("\nEnter array elements:"); 

     

    for(i=0;i<n;i++) 

        scanf("%d",&a[i]); 

         

    quick_sort(a,0,n-1); 

    printf("\nArray after sorting:"); 

     

    for(i=0;i<n;i++) 

        printf("%d ",a[i]); 

     

    return 0;         

} 

  

voidquick_sort(int a[],intl,int u) 

{ 

    int j; 

    if(l<u) 

    { 

        j=partition(a,l,u); 



        quick_sort(a,l,j-1); 

        quick_sort(a,j+1,u); 

    } 

} 

  

int partition(int a[],intl,int u) 

{ 

    intv,i,j,temp; 

    v=a[l]; 

    i=l; 

    j=u+1; 

     

    do 

    { 

        do 

            i++; 

             

        while(a[i]<v&&i<=u); 

         

        do 

            j--; 

        while(v<a[j]); 

         

        if(i<j) 

        { 

            temp=a[i]; 

            a[i]=a[j]; 

            a[j]=temp; 

        } 

    }while(i<j); 

     

    a[l]=a[j]; 

    a[j]=v; 

     

    return(j); 

} 

 

 

       (b) Write a program to implement linear queue using arrays  (10) 

#include <stdio.h> 

#include <malloc.h> 

#define MAX 10 

int queue[MAX]; 

int front = -1, rear = -1; 

void insert(void); 

intdelete_element(void); 

int peek(void); 

void display(void); 

int main() 

{ 



int choice, val; 

do { 

printf("\n1. Insert an element into a queue "); 

printf("\n2. Delete an element from a queue "); 

printf("\n3. Peek an element form a queue "); 

printf("\n4. Display the queue "); 

printf("\n5. EXIT"); 

printf("\n\n\nEnter your choice : "); 

scanf("%d",&choice); 

switch(choice) 

{ 

case 1: 

insert(); 

break; 

case 2: 

val = delete_element(); 

if(val != -1); 

printf("\n The number deleted is : %d", val); 

break; 

case 3: 

val = peek(); 

if(val != -1); 

printf("\n The first value in queue is : %d", val); 

break; 

case 4: 

display(); 

break; 

} 

} while(choice != 5); 

return 0; 

} 

void insert() { 

intnum; 

printf("\n Enter the element to be inserted into the queue : "); 

scanf("%d", &num); 

if(rear == MAX-1) 

printf("\n OVERFLOW"); 

else if(front == -1 && rear == -1) 

front = rear = 0; 

else 

rear++; 

queue[rear] = num; 

} 

intdelete_element() 

{ 

intval; 

if(front == -1 || front > rear) 

{ 

printf("\n UNDERFLOW"); 

return -1; 

} 



else { 

val = queue[front]; 

front++; 

if(front > rear) 

front = rear = -1; 

returnval; 

} 

} 

int peek() 

{ 

if(front == -1 || front > rear) 

{ 

printf("\n QUEUE IS EMPTY"); 

return -1; 

} 

else { 

return queue[front]; 

} 

} 

void display() 

{ 

inti; 

printf("\n"); 

if(front == -1 || front > rear ) 

printf("\n QUEUE IS EMPTY"); 

else { 

for(i = front;i<= rear ; i++) 

printf("\t %d", queue[i]); 

} 

} 

 

Q.5. (a) Write a program to implement STACK using Linked List. What are the advantages of linked list   (10) 

overarray?  

  

#include <stdio.h> 

#include <stdlib.h> 

 

struct Node 

{ 

int Data; 

struct Node *next; 

}*top; 

 

voidpopStack() 

{ 

struct Node *temp, *var=top; 

if(var==top) 

    { 

top = top->next; 

free(var); 



    } 

else 

printf("\nStack Empty"); 

} 

 

void push(int value) 

{ 

struct Node *temp; 

temp=(struct Node *)malloc(sizeof(struct Node)); 

temp->Data=value; 

if (top == NULL) 

    { 

top=temp; 

top->next=NULL; 

    } 

else 

    { 

temp->next=top; 

top=temp; 

    } 

} 

 

void display() 

{ 

struct Node *var=top; 

if(var!=NULL) 

     {  

printf("\nElements are as:\n"); 

while(var!=NULL) 

          { 

printf("\t%d\n",var->Data); 

var=var->next; 

          }  

printf("\n"); 

     } 

else 

printf("\nStack is Empty"); 

} 

 

int main(intargc, char *argv[]) 

{ 

inti=0; 

top=NULL; 

printf(" \n1. Push to stack"); 

printf(" \n2. Pop from Stack"); 

printf(" \n3. Display data of Stack"); 

printf(" \n4. Exit\n"); 

while(1) 

     { 

printf(" \nChoose Option: "); 

scanf("%d",&i); 



switch(i) 

          { 

case 1: 

               { 

int value; 

printf("\nEnter a valueber to push into Stack: "); 

scanf("%d",&value); 

push(value); 

display(); 

break; 

               } 

case 2: 

               { 

popStack(); 

display(); 

break; 

               } 

case 3: 

               { 

display(); 

break; 

               } 

case 4: 

               { 

struct Node *temp; 

while(top!=NULL) 

               { 

temp = top->next; 

free(top); 

top=temp; 

               } 

exit(0); 

               }  

default: 

               { 

printf("\nwrong choice for operation"); 

               } 

         } 

    } 

} 

 

 Dynamic size: As the size of linked list is not fixed so we can add or remove as much elements as required. 

But in array we have to pre-define the array size which we can’t change later. 

 Ease of insertion/deletion: Inserting a new element in an array of elements is expensive; because room has to 

be created for the new elements and to create room existing elements have to shift. 

 

       (b) Write a program to implement Binary Search Tree (BST). Show BST for the following input:        (10) 



                       10, 5, 4, 12, 15, 11, 3 

#include <stdio.h> 

#include <stdlib.h> 

 

structTreeNode { 

int data; 

structTreeNode *leftChildNode; 

structTreeNode *rightChildNode; 

}; 

 

typedefstructTreeNode node; 

node *rootNode = NULL; 

 

voidinsertNode(inti, node *n) { 

if(n == NULL) { 

        n = (node*)malloc(sizeof(node)); 

n->leftChildNode = NULL; 

n->rightChildNode = NULL; 

n->data = i; 

    } 

else 

if(n->data == i) 

printf("\nThis value already exists in the tree!"); 

else 

if(i> n->data) 

insertNode(i, n->rightChildNode); 

else 

insertNode(i, n->leftChildNode); 

    } 

 

voidsearchNode(inti, node *n) { 

if(n == NULL) 

printf("\nValue does not exist in tree!"); 

else 

if(n->data == i) 

printf("\nValue found!"); 

else 

if(i> n->data) 

searchNode(i, n->rightChildNode); 

else 

searchNode(i, n->leftChildNode); 

    } 

 

 

 

voiddisplayPreOrder(node *n) { 

if(n != NULL) { 

printf("%d ", n->data); 

displayPreOrder(n->leftChildNode); 

displayPreOrder(n->rightChildNode); 



    } 

} 

 

voiddisplayPostOrder(node *n) { 

if(n != NULL) { 

displayPostOrder(n->leftChildNode); 

displayPostOrder(n->rightChildNode); 

printf("%d ", n->data); 

    } 

} 

 

voiddisplayInOrder(node *n) { 

if(n != NULL) { 

displayInOrder(n->leftChildNode); 

printf("%d ", n->data); 

displayInOrder(n->rightChildNode); 

    } 

} 

 

int main(void) { 

intch, num, num1; 

do { 

printf("\nSelect a choice from the menu below."); 

printf("\n1. Insert a node."); 

printf("\n2. Search for a node."); 

printf("\n3. Display the Binary Search Tree."); 

printf("\nChoice: "); 

scanf("%d", &ch); 

switch(ch) { 

case 1: printf("\nEnter an element: "); 

scanf("%d", &num); 

                    //printf("YESYES"); 

insertNode(num, rootNode); 

break; 

 

case 2: printf("\nEnter the element to be searched for: "); 

scanf("%d", &num); 

searchNode(num, rootNode); 

break; 

 

case3: printf("\nSelect an order for the elements to be display in."); 

printf("\n1. Pre-order."); 

printf("\n2. Post-order."); 

printf("\n3. In-order."); 

printf("\nChoice: "); 

scanf("%d", &num1); 

switch(num1) { 

case 1: printf("\nPre-order Display: "); 

displayPreOrder(rootNode); 

break; 

 



case 2: printf("\nPost-order Display: "); 

displayPostOrder(rootNode); 

break; 

 

case 3: printf("\nIn-order Display: "); 

displayInOrder(rootNode); 

break; 

 

default: exit(0); 

                    } 

break; 

 

default: exit(0); 

            } 

        //printf("%d", rootNode->data); 

printf("\nIf you want to return to the menu, press 1."); 

printf("\nChoice: "); 

scanf("%d", &num); 

    } while(num == 1); 

return 0; 

 

 

 

Q.6. Write Short notes on (any two)    (20) 

 (a) AVL Tree 

 Named after their inventor Adelson, Velski&Landis, AVL trees are height balancing binary search 

tree. AVL tree checks the height of the left and the right sub-trees and assures that the difference is not more 

than 1. This difference is called the Balance Factor. 

Here we see that the first tree is balanced and the next two trees are not balanced − 

 
In the second tree, the left subtree of C has height 2 and the right subtree has height 0, so the difference is 2. 

In the third tree, the right subtree of A has height 2 and the left is missing, so it is 0, and the difference is 2 

again. AVL tree permits difference (balance factor) to be only 1. 

BalanceFactor = height(left-sutree) − height(right-sutree) 

If the difference in the height of left and right sub-trees is more than 1, the tree is balanced using some 

rotation techniques. 

AVL Rotations 



To balance itself, an AVL tree may perform the following four kinds of rotations − 

 Left rotation 

 Right rotation 

 Left-Right rotation 

 Right-Left rotation 

The first two rotations are single rotations and the next two rotations are double rotations. To have an 

unbalanced tree, we at least need a tree of height 2. With this simple tree, let's understand them one by one. 

Left Rotation 

If a tree becomes unbalanced, when a node is inserted into the right subtree of the right subtree, then we 

perform a single left rotation − 

 
In our example, node A has become unbalanced as a node is inserted in the right subtree of A's right subtree. 

We perform the left rotation by making A the left-subtree of B. 

Right Rotation 

AVL tree may become unbalanced, if a node is inserted in the left subtree of the left subtree. The tree then 

needs a right rotation. 

 
As depicted, the unbalanced node becomes the right child of its left child by performing a right rotation. 

Left-Right Rotation 

Double rotations are slightly complex version of already explained versions of rotations. To understand them 

better, we should take note of each action performed while rotation. Let's first check how to perform Left-

Right rotation. A left-right rotation is a combination of left rotation followed by right rotation. 

Right-Left Rotation 

The second type of double rotation is Right-Left Rotation. It is a combination of right rotation followed by left 

rotation. 
 

   

        (b) Graph Traversal Techniques 

Graph traversal is technique used for searching a vertex in a graph. The graph traversal is also used to 

decide the order of vertices to be visit in the search process. A graph traversal finds the egdes to be used in 



the search process without creating loops that means using graph traversal we visit all vertices of graph 

without getting into looping path. 

 

There are two graph traversal techniques and they are as follows... 

1. DFS (Depth First Search) 

2. BFS (Breadth First Search) 

DFS (Depth First Search) 

DFS traversal of a graph, produces a spanning tree as final result. Spanning Tree is a graph without any 

loops. We use Stack data structure with maximum size of total number of vertices in the graph to implement 

DFS traversal of a graph. 

 

We use the following steps to implement DFS traversal... 

 Step 1: Define a Stack of size total number of vertices in the graph. 

 Step 2: Select any vertex as starting point for traversal. Visit that vertex and push it on to the Stack. 

 Step 3: Visit any one of the adjacent vertex of the verex which is at top of the stack which is not 

visited and push it on to the stack. 

 Step 4: Repeat step 3 until there are no new vertex to be visit from the vertex on top of the stack. 

 Step 5: When there is no new vertex to be visit then use back tracking and pop one vertex from the 

stack. 

 Step 6: Repeat steps 3, 4 and 5 until stack becomes Empty. 

 Step 7: When stack becomes Empty, then produce final spanning tree by removing unused edges from 

the graph 

BFS (Breadth First Search) 

BFS traversal of a graph, produces a spanning tree as final result. Spanning Tree is a graph without any 

loops. We use Queue data structure with maximum size of total number of vertices in the graph to implement 

BFS traversal of a graph. 

 

We use the following steps to implement BFS traversal... 

 Step 1: Define a Queue of size total number of vertices in the graph. 

 Step 2: Select any vertex as starting point for traversal. Visit that vertex and insert it into the Queue. 

 Step 3: Visit all the adjacent vertices of the verex which is at front of the Queue which is not visited 

and insert them into the Queue. 

 Step 4: When there is no new vertex to be visit from the vertex at front of the Queue then delete that 

vertex from the Queue. 

 Step 5: Repeat step 3 and 4 until queue becomes empty. 

 Step 6: When queue becomes Empty, then produce final spanning tree by removing unused edges 

from the graph 

 

 

        (c) Expression Trees 

Expression Tree 

Expression tree is a binary tree in which each internal node corresponds to operator and each leaf node 

corresponds to operand so for example expression tree for 3 + ((5+9)*2) would be: 



 

Inorder traversal of expression tree produces infix version of given postfix expression (same with preorder 

traversal it gives prefix expression) 

Construction of Expression Tree: 

Now For constructing expression tree we use a stack. We loop through input expression and do following for 

every character. 

1) If character is operand push that into stack 

2) If character is operator pop two values from stack make them its child and push current node again. 

At the end only element of stack will be root of expression tree. 

 

        (d) Application of Linked list- Polynomial Addition. 

 Representation of a Polynomial:  A polynomial is an expression that contains more than two terms.  

A term is made up of coefficient and exponent.  An example of polynomial is 

P(x) = 4x3+6x2+7x+9 

A polynomial thus may be represented using arrays or linked lists.  Array representation assumes that the 

exponents of the given expression are arranged from 0 to the highest value (degree), which is represented by 

the subscript of the array beginning with 0.  The coefficients of the respective exponent are placed at an 

appropriate index in the array.  The array representation for the above polynomial expression is given below: 

 

A polynomial may also be represented using a linked list.  A structure may be defined such that it contains 

two parts- one is the coefficient and second is the corresponding exponent.  The structure definition may be 

given as shown below: 

            struct polynomial 

{ 

int coefficient; 

int exponent; 

http://www.geeksforgeeks.org/wp-content/uploads/expressiontre.png


struct polynomial *next; 

}; 

Thus the above polynomial may be represented using linked list as shown below: 

 

Addition of two Polynomials: 

For adding two polynomials using arrays is straightforward method, since both the arrays may be added up 

element wise beginning from 0 to n-1, resulting in addition of two polynomials.  Addition of two polynomials 

using linked list requires comparing the exponents, and wherever the exponents are found to be same, the 

coefficients are added up.  For terms with different exponents, the complete term is simply added to the result 

thereby making it a part of addition result. 

     


