(3)

(6)

(3)

(4)

(4)

Duration: $[2\frac{1}{2} \text{ Hours}]$ [Marks: 60]

- N.B. 1) All questions are compulsory and carry equal marks.
 - 2) Solve any **Two** from questions 1, 2, 3, 4.
 - 3) Solve any **Four** from 5th question.
 - 4) All Hilbert spaces are over Complex field.
- 1. (a) If f is an integrable periodic function and $\hat{f}(n)$ is its Fourier coefficient then show that
 - (i) The Fourier series of f can be written as

 $f(\theta) \sim \hat{f}(0) + \sum_{n \ge 1} [\hat{f}(n) + \hat{f}(-n)] \cos n\theta + i[\hat{f}(n) - \hat{f}(-n)] \sin n\theta.$

(ii)
$$\lim_{|n| \to \infty} \hat{f}(n) = 0. \tag{3}$$

- (b) (i) Define the N^{th} Dirichlet's kernel $D_N(x)$ and the N^{th} partial sum $S_N(f)$ of the Fourier series of an integrable periodic function f.
 - (ii) State and prove Dirichlet's theorem. (4)
- (c) Prove or disprove: The N^{th} Fejer kernel $F_N(x)$ is a good kernel.
- 2. (a) (i) Show that every non zero Hilbert space contains a complete orthonormal set. (3)
 - (ii) Let $I\!\!H$ be a Hilbert space and $\{e_i\}$ be complete orthonormal set in $I\!\!H$. If $f \in I\!\!H$ is orthogonal to e_i then show that f = 0.
 - (b) Let $\{e_k\}_{k=1}^{\infty}$ be an orthonormal set in Hilbert space $I\!\!H$ then show that for any $f \in I\!\!H$, $\sum_{k=1}^{\infty} |\langle f, e_k \rangle|^2 \le ||f||^2$. (6)
 - (c) Let \mathcal{C}^N denotes finite dimensional complex Euclidean space.
 - (i) Define inner product and norm on \mathcal{C}^N . (2)
 - (ii) Is \mathcal{C}^N Hilbert space? Justify your answer.
- 3. (a) Show that the Hilbert space $L^2[-\pi,\pi]$ is separable in its metric. (6)
 - (b) (i) Define infinite dimensional square summable sequence space of complex numbers $l^2(Z)$. (2) Also define inner product and norm on $l^2(Z)$.
 - (ii) Let periodic function $f \in L^2[-\pi, \pi]$ and a_n is Fourier coefficient of f. Is the mapping $f \mapsto \{a_n\}_{n \in \mathbb{Z}}$ a unitary correspondence between $L^2[-\pi, \pi]$ and $l^2(\mathbb{Z})$? Justify your answer
 - (c) Consider f is a continuous periodic function in $L^2[-\pi,\pi]$.
 - (i) Show that the partial sum of Fourier series of f converges to f in $L^2[-\pi, \pi]$. (3)
 - (ii) State and prove Parseval's identity for $f \in L^2[-\pi, \pi]$. (3)

[TURN OVER

(4)

(3)

(3)

- 4. (a) State and prove the Weierstrass approximation theorem. (6)
 - (b) If f be an integrable function defined on the circle and has a jump discontinuity at θ then show that

$$\lim_{r \to 1} A_r(f)(\theta) = \frac{f(\theta^+) + f(\theta^-)}{2}, \ 0 \le r < 1$$

where $A_r(f)(\theta)$ denotes the Abel mean of Fourier series of function f.

- (c) (i) State the Dirichlet's problem in the unit disc. (1)
 - (ii) Let f be an integrable function defined on the unit circle and $P_r(\theta)$ denotes the Poisson kernel. Show that solution of the Dirichlet's problem in the unit disc is given by the Poisson integral $u(r,\theta) = (f * P_r)(\theta)$.
 - (iii) Comment on the uniqueness of solution of the Dirichlet's problem. (1)
- 5. (a) The initial position of the triangular shaped plucked string to the height h is given by (3)

$$f(x) = \begin{cases} \frac{xh}{p}, & 0 \le x \le p, \\ \frac{h(\pi - x)}{\pi - p}, & p \le x \le \pi \end{cases}$$

Show that the Fourier series expansion of f is given by $f(x) = \sum_{m=1}^{\infty} A_m \sin mx$ where

$$A_m = \frac{2h\sin mp}{m^2p(\pi - p)}$$

(b) Suppose that $f: \mathbb{R} \to \mathbb{R}$ is continuous periodic function such that

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = 0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$$

for all $n \in \mathbb{Z}^+$ then prove that f is identically zero.

- (c) Let f be the function defined on $[-\pi, \pi]$ by $f(\theta) = |\theta|$. Use Parseval's identity to find the sum of series $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^4}$.
- (d) If f is integrable function defined on the circle then show that

$$||f - S_N(f)|| \le ||f - \sum_{|n| \le N} c_n e_n||$$

for any complex number c_n , where $S_N(f)$ is the N-th partial sum of Fourier series of f and $\{e_n\}$ be an orthonormal set.

- (e) Find a function f_r whose Fourier coefficients are $\hat{f}_r(n) = r^{|n|}$ where $0 \le r < 1$. (3)
- (f) Give an example of a series which Abel summable but not Cesaro summable. Justify your answer. (3)
