Q.P.Code: 07084

.Duration: 2 hrs 30 min Max Marks:75 **Revised Course** N.B:1) All questions are compulsory. 2) From questions 1,2 and 3 attempt any one from part(a) and any two from part(b) 3) From question 4 attempt any three. 4) Figures to the right indicate marks for the sub-parts State and prove Baye's Theorem 1.a) i) Show that for any events A and B, the following conditions are 8 ii) equivalent: A and B are independent, • $\Omega \setminus A$ and B are independent, • $\Omega \setminus A$ and $\Omega \setminus B$ are independent Let A, B, C be independent events. Show that A, B \cap C and 6 b) i) A, B \ C are independent You randomly throw a dart at a circular dartboard with radius R. It is ii) assumed that the dart is infinitely sharp and lands on a completely random point on the dartboard. How do you calculate the probability of the dart hitting the bull's-eye having radius *b*? Let $\Omega = \{1,2,3,4,5,6\}$ with uniform probability. Show that if $A,B \subseteq \Omega$ iii) 6 are independent and A has 4 elements, then B must have 0,3 or 6 elements. Let $\Omega = [0,1]$. Adding as few sets as possible, complete the family of iv) 6 sets $\{\phi, [0, \frac{1}{2}), \{1\}\}\$ to obtain a field If $R_1 \dots R_n$ are discrete random variables on a given probability space 8 2.a) i) with probability functions $p_1, \dots p_n$. Let $p_{1,2,\dots,n}$ be the joint probability function of $R_1, \dots R_n$ defined by $p_{1,2,\dots,n}(x_1, x_2, \dots, x_n) =$ $P\{R_1 = x_1, R_2 = x_2, \dots, R_n = x_n\}$. Then prove that $R_1 \dots R_n$ are independent iff $p_{1,2,...,n}(x_1, x_2, ..., x_n) = p_1(x_1) p_n(x_n)$. Let $R'=g(R_1,R_2)$, $R''=h(R_1,R_2)$. Show that 8 ii) • E(R'+R'')=E(R')+E(R'')• E(aR) = a E(R)• If $R_1 \le R_2$ then $E(R_1) \le E(R_2)$ If $R_1 \dots R_n$ are discrete random variables on a given probability space 6 b) i) with probability functions $p_1, \dots p_n$. Let $p_{1,2,\dots n}$ be the joint probability function of $R_1, ... R_n$ defined by $p_{1,2,...n}(x_1,x_2,...,x_n) = P\{R_1 = x_1, R_2 = x_2, ... R_n = x_n\}.$ Then $R_1 \dots R_n$ are independent iff $p_{1,2,\dots,n}(x_1,x_2,\dots,x_n) =$ $p_1(x_1) \dots p_n(x_n)$.

- ii) Find the distribution function of X(w)=c (a constant random variable 6 identically equal to c).
- iii) Let R_1 be absolutely continuous with density $f_1(x) = e^{-x}$, $x \ge 0$ 6 = 0. x < 0.

Define $R_2 = R_1 \text{ if } R_1 \le 1$ $= \frac{1}{R_1} \text{ if } R_1 > 1$

Show that R_2 is absolutely continuous and find its density

- iv) A biased coin with probability of heads p and tails 1-p is tossed frepeatedly. Let X be the number of tosses until heads appears for the first time. Compute the expectation of X.
- 3.a) i) State and prove Schwarz inequality.
 - ii) State and prove Chebyshev's inequality 8
- b) i) Prove $cov(R_1, R_2) = E(R_1R_2) E(R_1)E(R_2)$
 - ii) A fair coin is tossed independently n times. Let S_n be the number of heads obtained. Use Chebyshev's inequality to find a lower bound of the probability then S_n /n differ from ½ by less then 0.1 when n=100.
 - iii) Three coins 5\$; 10\$ and 25\$ are tossed; X is the total amount shown and Y is the number of heads. Find the explicit formula for E(X|Y). How many different values does E(X|Y) take?
 - iv) Let Y be a discrete random variable. Show that E(E(X|Y)) = E(X). 6
- 4) a) A monkey hits a computer keyboard three times at random. What is the chance of getting a three letter word with a consonant followed by two vowels? The word does not have to make sense. For simplicity, assume that there are 100 keys.
 - b) Two identical coins are flipped simultaneously. Let X be the number of heads and Y be the number of tails shown. What is the joint distribution of X and Y? What are the marginal distributions?
 - c) Find the lower bound for the probability that the average number of 5 heads in 100 tosses of a coin differs from ½ by less then 0.1.
 - d) A coin is tossed. If it shows heads, you pay 2 dollars. If it shows tails, you spin a which gives the amount you win distributed with uniform probability between 0 and 10 dollars. You gain (or loss) is a random variable X. Find the distribution function and use it to compute the probability that you will not win at least 5 dollars.
 - e) Let R_1 be normally distributed with mean m and variance σ^2 . Let $R_2=aR_1+b$. Show that is normally distributed. Find the density function of R_2 , $E(R_2)$ and $Var(R_2)$
 - f) Prove: $P(A \setminus B) = P(A) P(B)$ if $B \subseteq A$. $P(A \cup B) = P(A) + P(B) - P(A \cap B)$