Q.P. Code: 06482

Rev. Course

(2½ Hours)

Total Marks: 75

N.B.: (1) All questions are compulsory.

- (2) Figures to the right indicate marks for respective sub questions.
- 1. (a) Attempt any *one* of the following:

[8]

(i) Derive the Muller's iteration formula

 $x_{k+1} = x_k - \frac{2a_2}{a_1 \pm \sqrt{a_1^2 - 4a_1a_2}}$ for finding the roots of the polynomial $f(x) = a_0 x^2 + a_1 x + a_2$

- Prove that the iteration method $x_{k+1} = x_k \frac{f(x_k)}{f'(x_k)}$ has quadratic rate of convergence. Hence find the double root near x=1.1 of x³-4x²+5x-2=0.
- **(b)** Attempt any *two* of the following:

[12]

- (i) Find the smallest positive root correct to 4 decimal places by False position method for the equation x^4 -x-10=0.
- (ii) Find the smallest positive root correct to 3 decimal places by Secant method for the equation $x e^{-x} = 0$.
- (iii) Perform three iterations of Newton-Raphson method correct to 4 decimal places to obtain approximate value of $(17)^{1/3}$ taking initial approximation as $x_0=2$.
- (iv) Perform one iteration using Muller method for the equation x^3 (1/2) = 0, $x_0=0, x_1=1, x_2=(1/2)$.
- 2. (a) Attempt any *one* of the following:

[8]

- (i) Discuss Birge-Vieta process for determining the roots of an algebraic equation.
- (ii) Discuss Bairstow process for determining the roots of an algebraic equation.
- **(b)** Attempt any *two* of the following:

[12]

- (i) Using synthetic deviation, find the value of P(2), P'(2), P''(2) for the polynomial $x^5+x^4-3x^2+2x-7=0$.
- (ii) Use Birge-Vieta method to find a real root correct to 3 decimal places of the equation $x^3-11x^2+32x-22=0$, $P_0=0.5$

2

- (iii) Perform one iteration using Bairstow method for the polynomial $x^4+x^3+2x^2+x+1=0$, using initial approximation $p_0=0.5$, $q_0=0.5$.
- (iv) Find all the roots of the polynomial $x^3-6x^2+11x-6=0$ by Graffe's root squaring method. Do 3 iterations.
 - **3.** (a) Attempt any **one** of the following:

[8]

- i) Describe Jacobi iterative method to solve a system of linear equations.
- ii) Let L and U denote lower and upper triangular matrices obtained by triangular decomposition and consider the process $A = A_0 = L_0U_0$, $A_1 = U_0L_0 = L_1U_1$, ..., $A_k = U_{k-1}L_{k-1} = L_kU_k$, ... Show that A and A_k have the same eigenvalues.
- (b) Attempt any two of the following:

[12]

i) Find Crout's factorization of the matrix, $A = \begin{bmatrix} 3 & 6 & 9 \\ 2 & 6 & 10 \\ 1 & 3 & 6 \end{bmatrix}$

Hence solve a system of equations:

$$3x + 6y + 9z = 0$$
, $2x + 6y + 10z = 2$ and $x + 3y + 6z = 2$

ii) Consider a system of equations :

10x + y - 2z = 17, x+10y + 2z = -6 and x - 2y + 10z = 14

Check whether Jacobi's iteration method to solve a system of linear equations is applicable to this system? Justify your answer.

If so, apply it by taking $(x^{(0)}, y^{(0)}, z^{(0)}) = (1, 0, 0)$.

Perform two iterations.

- iii) Using Jacobi iteration method find the eigenvalues and eigenvectors of a matrix $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$.
- iv) Determine the smallest eigenvalue in magnitude and corresponding eigenvector for a matrix, $A = \begin{bmatrix} 4 & 5 \\ 6 & 5 \end{bmatrix}$ using power method. Perform two iterations by taking an initial approximation to the eigenvector as $\mathbf{v}^{(0)} = [2, -3]^t$.

4. Attempt any **three** of the following :

[15]

- (a) Apply Regula Falsi method to find $\sqrt[3]{20}$ in the interval [2, 3]. Perform two iterations. Find absolute error in the calculations.
- (b) Prove that $f(x) = x^3 x^2 x + 1$ has a double root at x = 1. Use modified Newton Raphson method to obtain this root by taking $x_0 = 0.5$. Perform two iterations.
- (c) Perform two iterations of Chebyshev method to find an approximate root of $f(x) = x^3 5x + 1$, by taking $x_0 = 0.5$.
- (d) Use the Birge Vieta method to find a root of $P_5(x) = x^5 x + 1$. Perform one iteration by taking $x_0 = -1$.
- (e) (e) Check whether Cholesky factorization is possible for a matrix, $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 5 & 5 \\ 1 & 5 & 14 \end{bmatrix}$. Justify your answer. If so, find its Cholesky factorization.
- (f) Determine the largest eigenvalue in magnitude and corresponding eigenvector for a matrix, $A = \begin{bmatrix} 1 & 3 \\ 3 & 5 \end{bmatrix}$ using power method. Perform three iterations by taking an initial approximation to the eigenvector as $\mathbf{v}^{(0)} = [1,2]^t$.