Examination : SYBA_Semester IV Exam Date : 03-05-2019

Subject : Mathematics (Paper III) Q.P.Code : 66044

(3 Hours)

[Total Marks: 100]

Note: (*i*) All questions are compulsory.

(*ii*)Figures to the right indicate marks for respective parts.

Q.1	Choo	oose correct alternative in each of the following (20)			
i.	Let ((G, \cdot) be a group such that $\forall x, y \in G$, then which of the following is always true?			
	(a)	$(xy)^{-1} = y^{-1}x^{-1}$	(b)	$\left(x^{-1}\right)^{-1} = x \ \forall x, y \in G, xy \neq yx$	
	(c)	$x^m x^n = x^{m+n}$	(d)	All of the above	
	Ans	(c)			
ii.	The se	et $\mathbb{Q}^*(\mathbb{Q}\setminus\{0\})$ is forms a group un	der tł	ne binary operation	
	(a)	·+'	(b)	·_?	
	(c)	·•'	(d)	None of the above	
	Ans	(a)			
iii.	Let L	D_n denote the dihedral group. Then $ D_5 =$			
	(a)	5	(b)	120	
	(c)	10	(d)	None of the above	
	Ans	(b)			
iv.	Let H	be a subgroup of a group G . then			
	(a)	$\forall x, y \in H, xy^{-1} \in H$	(b)	$\forall x, y \in H, xy^{-1} \in G$	
	(c)	$\forall x, y \in H, xy^{-1} \notin H$	(d)	None of the above	
	Ans	(a)			
<i>v</i> .	Let G	be a cyclic group of order n gener	ated	by 'a' then $\langle a^r \rangle = \langle a^s \rangle$ implies	
	(a)	(r,s)=1	(b)	s = (n, r)	
	(c)	(n,r) = (n,s)	(d)	r/(n,s)	
	Ans	(c)			
vi.	The g	generators of $20\mathbb{Z} \cap 30\mathbb{Z}$ are			
	(a)	60, -60	(b)	10, -10	
	(c)	20, 30	(d)	None of the above	
	Ans	(a)			

vii.	Let <i>H</i>	t H be a subgroup of G and $a, b \in G$. If $aH \neq bH$ then			
	(a)	$aH \cap bH = \emptyset$	(b)	$aH \cap bH \neq \emptyset$	
	(c)	$aH \subset bH$	(d)	None of these	
	Ans	(a) $aH \cap bH = \emptyset$			
viii.	Let G	be a group of order 25. Then			
	(a)	G is cyclic	(b)	G is cyclic or $g^5 = e$, $\forall g \in G$	
	(c)	$g^5 = e, \forall g \in G$	(d)	None of these	
	Ans	(b) G is cyclic or $g^5 = e$, $\forall g$	$\in G$		
ix.	Let ¢	$\phi: \mathbb{C}^* \to \mathbb{C}^*$ given by $\phi(x) = x^4$ be	e a ho	momorphism then $ker\phi =$	
	(a)	{1, -1}	(b)	$\{1, -1, i, -i\}$	
	(c)	$\{i,-i\}$	(d)	None of these	
	Ans	(b) $\{1, -1, i, -i\}$			
х.	Let ¢	$\phi: \mathbb{Z}_{12} \longrightarrow \mathbb{Z}_{10}$ given by $\phi(x) = 3x$	then		
	(a)	ϕ is not a group homomorphism.	•		
	(b)	ϕ is a group homomorphism whi	ch is	not one —one.	
	(c)	ϕ is a group homomorphism whi	ch is	not onto.	
	(d)	None of these			
	Ans	(a) ϕ is not a group homomorph	ism.		
Q2.	Atten	ppt any ONE question from the fol	llowir	ng: (08)	
a)	i.	Define Centre of Group G. Hence or otherwise prove that the Centre of any group is			
		a subgroup of the group.			
	Ans	Clearly ea = ae $\forall a \in G$ $\Rightarrow e \in H \Rightarrow H \neq \phi$			1
		Consider any x, $y \in H$		(1)	1
		$v \in H \Rightarrow va = av \forall a \in G$		(2)	
		\Rightarrow y ⁻¹ (ya)y ⁻¹ = y ⁻¹ (ay) y ⁻¹		by (2)	
		$\Rightarrow (y^{-1}y) (ay)^{-1} = (y^{-1}a) (yy^{-1})$		associativity of G	
		$\Rightarrow e (ay^{-1}) = (y^{-1}a) e$		(2)	
		$\Rightarrow ay^{-1} = y^{-1}(a) \forall a \in G$ $\Rightarrow y^{-1} \in H$		(3)	
		Consider any $a \in G$			3
		Consider,			
		$-(\lambda u)y$ about a living			
		$= (ax) y^{-1} \cdots by (1)$ = a (xv ⁻¹)			2
		Thus, $\forall a \in G$			
		$(xy^{-1})a = a(xy^{-1})$			
		$\Rightarrow xy^{-1} \in H$			
		Thus for any $x, y \in H$			
		xy ⁻¹ \in H			
		\Rightarrow H is a subgroup of G			1

-				
			2	
	ii.	Prove that if for $a \in C$, $Q(a) = m$ then $Q(a^k) = \frac{m}{m}$	I	
		Prove that if for $a \in G$, $\mathcal{O}(a) = m$ then $\mathcal{O}(a) = \frac{1}{g.c.d.(m,k)}$.		
	Ans	Let $(m, k) = d$, Let $o(a^k) = n$		
		$(\mathbf{m},\mathbf{k}) = \mathbf{d} \Rightarrow \mathbf{d} \mid \mathbf{m}, \mathbf{d} \mid \mathbf{k}$		
		$\Rightarrow \mathbf{m} = \mathbf{m}_1 \mathbf{d}, \mathbf{k} = \mathbf{k}_1 \mathbf{d} \text{ and } (\mathbf{m}_1, \mathbf{k}_1) = 1 \qquad \cdots (1) \qquad 2$		
		Consider $(a^k)^{m_1} = (a^{k_1d})^{m_1} = (a^{k_1})^{dm_1}$		
		$= (a^{k_1})^m$		
		$(a^m)^{k_1}$		
		$= e^{\kappa_1} \qquad (as o (a) = m)$		
		$(a^k)^{m_1} = e$ and $o(a^k) = n$ 1		
		$\Rightarrow n \mid m_1 \qquad \dots (*)$		
		Now, $o(a^k) = n \Rightarrow (a^k)^n = e$		
		$\Rightarrow a^{kn} = e$		
		But $o(a) = m \implies m \mid kn$		
		$\Rightarrow m_i d k_i dn \qquad by (1) \qquad 2$		
		$\Rightarrow m_1 n \qquad \text{as } (m_1, k_1) = 1 \qquad (**)$ Thus by (*). (**) $m_2 - n_3$		
		matrix by ()/ () mi = m m		
		$n = m_1 = \frac{1}{d} $ (by (1))		
		$=\frac{m}{(m+1)}$ Thus, $n=\frac{m}{(m+1)}$		
		(m,k) (m,k) 1		
		(i.e.) $o(a^k) = \frac{1}{(m,k)}$ (as $o(a^k) = n$)		
Q.2	Atten	npt any TWO questions from the following: (12)		
<i>b</i>)	i.	Show that (\mathbb{Q}^*, o) is a group, where $a \ ob = \frac{ab}{3}$, for $a, b \in \mathbb{Q}^*$.		
	Ans	Closure	2	
		Associative trivial		
		$id_{out}it_{v} = o = 2$	2	
		1000000000000000000000000000000000000		
		\mathbf{J}	2	
		$\begin{array}{c} \text{Inverse of } a \in \mathbb{Q} \text{is } b = \frac{1}{a} \end{array}$		
	ii.	Let $a = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 6 & 4 & 2 & 1 \end{pmatrix}$, $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6 & 4 & 1 & 5 & 2 \end{pmatrix} \in S_6$. Find		
		$(5 \ 5 \ 0 \ 4 \ 2 \ 1)$ (2 0 4 1 5 5) $\alpha \beta \beta^{-1} \alpha \beta^{-1}$ and their orders in the group S. Clearly state the result used to		
		ap, p , ap and then orders in the group S_6 . Clearly state the result used to		
	Ans	$\alpha = (1\ 3\ 6)(2\ 5), \qquad \beta = (1\ 2\ 6\ 3\ 4)$		
		$\alpha R = (126)(2E)(12624) = (1E2)(24)$		
		ap = (150)(25)(12054) = (152)(54)	2	
		$U(\alpha \beta) = 3 \times 2 = 6(\because \alpha, \beta \text{ are disjoint cycles})$	2	

		$\beta^{-1} = (4\ 3\ 6\ 2\ 1), O(\beta^{-1}) = 5 (\because \beta \text{ is a cycle of length 5})$	2
		$\alpha R^{-1} = (126)(2E)(42621) = (146E22)$	
		$ap = (150)(25)(45021) - (140525)$ $O(\alpha R^{-1}) = 6 (, R \text{ is a cycle of length } 6)$	2
	;;;	$U(\mu \rho) = 0$ ($\cdot \rho$ is a cycle of religtin 0)	2 ;;f
	111.	Let H and K be subgroups of group G. Prove that $H \cup K$ is also a subgroup of G and only if either $H \subseteq K$ or $K \subseteq H$	r 11
	•	and only if either $H \subseteq K$ of $K \subseteq H$	2
	Ans	If $H \subseteq K, H \cup K = K$, which is a subgroup of G	2
		If $K \subseteq H, H \cup K = H$, which is a subgroup of G	
		$H \cup K$ is a subgroup of G	
		T.P.T either $H \subseteq K$ or $K \subseteq H$	
		If $H \subseteq K$ then nothing to prove	
		If not,	
		$\exists x \in H \ s.t \ x \notin K$	
		Let $y \in K$	
		$x, y \in H \cup K$	
		$\therefore xy \in H \cup K$	
		If $xy \in K$ then $xy, y^{-1} = x \in K$, which is a contradiction.	
		$\therefore xy \in H$	
		$x^{-1}xy = y \in H$	
		$\therefore K \subseteq H$	4
	iv.	Let G be a group. Then prove that, $(aba^{-1})^n = ab^n a^{-1}, \forall a, b \in G$ and $\forall n \in$	Ζ.
	Ans		
		By induction	
		n = 0	2
		$(aba^{-1})^0 = e = ab^0a^{-1}$	
		Assume for $n > 0$	
		$(aba^{-1})^{n+1} = (aba^{-1})^n . aba^{-1}$	
		$= ab^n a^{-1} . aba^{-1}$	2
		$=ab^{n+1}a^{-1}$	
		For $n < 0, -n > 0$	
		$(aba^{-1})^n (aba^{-1})^{-n} = e$	
		$(aba^{-1})^n ab^{-n} a^{-1} = e$	2
		$(aba^{-1})^n = ab^n a^{-1}$	
Q3.	Atten	npt any ONE question from the following: (08)	
a)	i.	Let G be a finite cyclic group of order 'n' then prove that G has unique subgroup	p of

	order 'd' for each divisor d of n .	
Ans	G is a finite cyclic group of order 'n' generated by 'a'	
	G = <a>, O(a) = n	
	Let $d n \therefore n = dd_1$	
	Consider $H = \langle a^{\frac{n}{d}} \rangle = \langle a^{d_1} \rangle$	
	$O(a^{d_1}) = \frac{n}{(n, d_1)} = \frac{n}{d_1} = d$	
	$\therefore H = \langle a\overline{a} \rangle$ is a subgroup of order d	4
	Uniqueness:	
	Let H' be any other subgroup of order d We know that H' is generated by a^m where m is the smallest positive integer such that $a^m \in H'$ $H' = \langle a^m \rangle$	
	$\exists ! q, r s. t n = mq + r, where r = 0 or r < m$ If $r < m$ then $a^r = (a^m)^{-q} \in H'$	
	Which is a contradiction because m is the smallest positive integer such that $a^m \in H'$	
	n = mq $O(H') = d$	
	$\begin{array}{l} O(a^m) = d\\ n \end{array}$	
	$\frac{1}{(n,m)} = d$	
	$\frac{d}{m} = d$	4
	$\therefore H' = < a^m > = < a^{\frac{n}{d}} > = H$	
ii.	List all generators and all subgroups of the cyclic group $G = \langle a \rangle$ of order 18.	1
Ans	$G = \langle a \rangle, O(G) = O(a) = 18$	
	Generators	
	$a^1, a^5, a^7, a^{11}, a^{13}, a^{17}$	2
	Subgroups	
	1 18 ∃! subgroup of order 1 namely	
	$H_1 = \langle a^{\frac{18}{1}} \rangle = \{e\}$	
	2 18 ∃! subgroup of order 2 namely	
	$H_2 = = = \{a^9, e\}$	

		3 18 ∃! subgroup of order 3 namely	
		$H_2 = \langle a^{\frac{18}{3}} \rangle = \langle a^6 \rangle = \{a^6, a^{12}, e\}$	
		$6 18 \exists$! subgroup of order 6 namely	
		$H = a^{\frac{18}{16}} > -a^3 > -(a^3 a^6 a^9 a^{12} a^{15} a)$	
		$n_4 = \langle u \circ \rangle = \langle u \rangle = \{u, u, u, u, u, u, v \}$	
		$\frac{18}{12}$ 2 4 6 8 10 12 14 16 5	
		$H_5 = \langle a_9 \rangle \ge \langle a^2 \rangle \ge \{a^2, a^4, a^6, a^6, a^{10}, a^{12}, a^{14}, a^{16}, e\}$	
		$18 18 \exists ! subgroup of order 18 namely$	6
		$H_6 = \langle a^{\frac{10}{18}} \rangle = \langle a^1 \rangle = G$	0
Q3.	Atten	ppt any TWO questions from the following: (12)	
<i>b</i>)	i.	If <i>G</i> is infinite cyclic group generated by <i>a</i> then show that <i>G</i> has exactly two generators ' <i>a</i> ' and ' a^{-1} '	
	Ans	G is infinite cyclic group generated by a	
		Let b be a generator of G	
		$\therefore < a > = < b >$	
		$a \in \langle a \rangle \subseteq \langle b \rangle \therefore a = b^n$, for some $n \in \mathbb{Z}$	
		$b \in \langle b \rangle \subseteq \langle a \rangle \therefore b = a^m$, for some $m \in \mathbb{Z}$	
		$a = b^n = (a^m)^n = a^{mn}$	
		$\therefore mn = 1$ (: <i>a</i> is of infinite order)	
		m, n = 1 or -1	
		$b = a^1 or a^{-1}$	6
		\therefore G has exactly two generators ' a' and 'a ^{-1'}	0
	11.	Let $U(n) = \{\bar{x} \mid x \in \mathbb{N}, (x, n) = 1, 1 \le x \le n\}$ under multiplication modulo <i>n</i> .	
		Determine which of the following groups are cyclic. Justify your answer.	
		(p) U(4) (q) U(8)	1
	Ans	$U(4) = \{1,3\}$	
		$U(8) = \{1,3,5,7\}$	2
			2
		As U(3) = 2 :: U(4) = < 3 >	2
		As $Q(3) = Q(5) = Q(7) = 2 : U(8)$ is not cyclic	2
	iii.	Prove that every cyclic group is abelian. Is the converse true? Justify	
	Ans	Let G be a cyclic group generated by $'a'$	
	1 1115	Let $x, y \in G$	
		$\therefore x = a^i$ for some $i \in \mathbb{Z}$ and $y = a^j$ for some $i \in \mathbb{Z}$	
		$xy = a^{i}a^{j} = a^{i+j} = a^{j+i} = a^{j}a^{i} = yx$	
		$\therefore G$ is abelian	5
		Converse is not true As we have kliens 4 group of order 4 as abelian group	
		where order of each element is 2 hence its not cyclic.	1

	iv.	Let $G = \langle a \rangle$ be a cyclic group of order 20. Find all distinct elements of the subg $\langle a^4 \rangle$ and $\langle a^7 \rangle$.	roups
	Ans	$O(a^4) = \frac{20}{(4,20)} = 5, \langle a^4 \rangle = \{a^4, a^8, a^{12}, a^{16}, e\}$	3
		$O(a^7) = \frac{20}{(7,20)} = 20, \langle a^7 \rangle = G$	3
Q4.	Atten	npt any ONE question from the following: (08)	
a)	i.	Let <i>H</i> is a subgroup of a group <i>G</i> then $aH = H$ if and only if $a \in H$. Further aH subgroup of <i>G</i> if and only if $a \in H$.	is
	Ans	For $e \in H \implies ae \in aH = H \implies a \in H$	
		Conversely,	
		Let $x \in aH \implies x = ah$, $h \in H \implies x = ah \in H$ as $a \in H \implies aH \subseteq H$	4
		For $a \in H$ and $e \in H \implies a = ae \in aH \implies H \subseteq aH$. Hence $aH = H$ Further aH is subgroup of $C \implies a \in aH \implies a = ab$. $b \in H \implies ab^{-1} = a$	4
		Further an is subgroup of $G \rightarrow e \in un \rightarrow e = un$, $n \in n \rightarrow en = u$ As $e^{-1} \in H \implies eh^{-1} = a \in H$	
		Conversely, as $a \in H \implies aH = H$	
		Hence aH is subgroup of G as H is subgroup of G.	4
	ii.	Let $f: G \to G'$ is onto group homomorphism. then show that	
		(p) $f(e) = e'$, where e and e' are identities of G and G' respectively.	
		(q) $f(a^{-1}) = [f(a)]^{-1}, \forall a \in G$	
		(r) $f(a^m) = [f(a)]^m, \forall a \in G, m \in \mathbb{N}$	n
	Ans	(p) Since $e \cdot e = e \implies f(e \cdot e) = f(e) \implies f(e) \cdot f(e) = f(e) \cdot e'$	
		using LCL we get $f(e) = e^{-1}$	2
		$(q) :: a a^{-1} = e \implies f(a \cdot a^{-1}) = f(e)$	2
		$\Rightarrow f(a) \cdot f(a^{-1}) = e \Rightarrow f(a^{-1}) = [f(a)]^{-1}$	2
		(1) Using induction, For $m = 1$, $f(a) = f(a)$ and $[f(a)] = f(a)$ Suppose for $m = k$, $f(a^k) = [f(a)]^k$	
		Consider $f(a^{k+1}) = f(a^k) f(a) = [f(a)]^k f(a) = [f(a)]^{k+1}$	
		Hence $f(a^m) = [f(a)]^m$, $\forall a \in G$, $m \in \mathbb{N}$	4
Q4.	Atten	npt any TWO questions from the following: (12)	
<i>b</i>)	i.	Let G be a group and H and K are subgroups of G . Show that	
		$(H \cap K)a = Ha \cap Ka$, $\forall a \in G$.	
	Ans	Let $x \in (H \cap K)a \implies x = ga$, where $g \in H \cap K$	
		$\therefore g \in H \text{ and } g \in K \implies x = ga \in Ha \text{ and } x = ga \in Ka \implies x \in Ha \cap Ha$	
		$\begin{bmatrix} Ka \\ (H \cap K)a \subseteq Ha \cap Ka \end{bmatrix} $ (1)	
		$(\Pi \Lambda) \mu \subseteq \Pi \mu \Lambda \mu = ha y = ha y = ka \text{ for } h \in H \text{ and } k \in K$	
		$\therefore va^{-1} \in H \text{ and } K \implies va^{-1} \in H \cap K \implies v \in (H \cap K)a \implies Ha \cap Ka \subset Ka$	
		$(H \cap K)a (2)$	6

		(1) and (2) gives $Ha \cap Ka \subseteq (H \cap K)a$			
	ii.	Let H and K be two subgroups of G. If $o(H) = p$, a prime integer, then show that			
		either $H \cap K = \{e\}$ or $H \subseteq K$.			
	Ans	Since <i>H</i> and <i>K</i> be two subgroups of $G \Longrightarrow H \cap K$ is also subgroup of <i>G</i> .			
		Further $H \cap K \subseteq H \implies H \cap K$ is also subgroup of H .			
		By Lagrange's theorem, $o(H \cap K) o(H) \implies o(H \cap K) p$			
		$o(H \cap K) = 1 \text{ or } p$			
		If $o(H \cap K) = 1 \Longrightarrow H \cap K = \{e\}$			
		If $o(H \cap K) = p = o(H)$, also $H \cap K \subseteq H$ gives $H \cap K = H$			
		Hence $H \subseteq K$.	6		
	iii.	Let $f: G \to G'$ is onto group homomorphism, then show that			
		(p) $o(f(a)) o(a), \forall a \in G$			
		(q) If G is abelian then G is also abelian.			
	Ans	(p) Let $o(a) = n$ then $a^n = e$			
		Since f is homomorphism $\Rightarrow [f(a)]^n = f(a^n) = f(e) = e^r$	2		
		$\therefore o(f(a)) \mid n \implies o(f(a)) \mid o(a) , \forall a \in G$	3		
		(q) Claim : G' is abelian (i.e.) $xy = yx$, $\forall x, y \in G'$			
		Since f is onto $\exists a, b \in G$ such that $f(a) = x$, $f(b) = y$			
		Also G is abelian $\Rightarrow ab = ba$	3		
		Now $xy = f(a)f(b) = f(ab) = f(ba) = f(b)f(a) = yx \implies G$ is abelian.			
	iv.	Show that $f: GL_2(\mathbb{K}) \to (\mathbb{K}^*, \cdot)$ defined by $f(A) = detA$ is a group homomorphism. Also find <i>harf</i> . Is f an isomorphism? Justify			
		homomorphism. Also find kerf. Is f an isomorphism? Justify. New $f(AB) = det(AB) = det(A) det(B) = f(A) f(B)$			
	Ans	Now $f(AB) = \det(AB) = \det(A) \det(B) = f(A) f(B)$	•		
		\Rightarrow f is homomorphism	2		
		$kerf = SL_2(\mathbb{R}) ,$	2		
		since $kerf \neq \{e\} \Longrightarrow f$ an not isomorphism.	2		
Q5.	Attem	apt any FOUR questions from the following: (20)			
a)	Const	ruct composition table of \mathbb{Z}_5^* under multiplication modulo 5. Also find the order of	of		
	each o	of its elements.			
Ans					
	1	1 2 3 4			
	1	1 2 3 4	3		
	3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2		
	0(1)	= 1, 0(2) = 4, 0(3) = 4, 0(4) = 2	2		
<i>b</i>)	Let G	be a group. Prove that for $a \in G$, if $O(a) = nm$ then $O(a^n) = m$			
Ans	Let O	$(a^n) = t$			
	$(a^n)^t$	= e			
	$a^{nt} =$	e			

	nm nt	
	$\therefore m t(1)$	
	$(a^n)^m = a^{nm} = e$	
	But $O(a^n) = t$	
	$\therefore t m(2)$	
	From (1) and (2)	5
	t = m	
<i>c</i>)	Show that every group of prime order p is cyclic.	
Ans	Let G be a cyclic group of order p	
	Let $a \neq e, a \in G$ (Note : Such a choice is always possible)	
	O(a) O(G)	
	O(a) p	
	O(a) = 1 or p	
	If $O(a) = 1$, then $a = e$, but e was non identity element	
	If $O(a) = p$, then $G = \langle a \rangle$	5
<i>d</i>)	Let G be a cyclic group of order 40. Find the number of elements of order 4 and the nu	mber
	of elements of order 10 in G. Clearly state the result used.	
Ans	Result :	
	If G is a cyclic group of order n generated by a then for every divisor d of n there	2
	are $\varphi(d)$ elements of order d	
	4 40 :: number of elements of order $4 = \varphi(4) = 2$	
	10 40 \therefore number of elements of order $10 = \varphi(10) = 4$	3
<i>e</i>)	Prove that every group of order 49 contains a subgroup of order 7.	
Ans	Let G be a group of order 49.	
	If G is cyclic then $\exists a \in G$ such that $o(a) = 49$	
	Now $o(a^7) = \frac{o(a)}{(o(a)-7)} = \frac{49}{(40,7)} = 7$ then $H = \langle a^7 \rangle$ is subgroup of G of order 7.	
	If G is not cyclic then G doesn't have any element of order 49	
	Also $\rho(q) \mid \rho(G), \forall q \in G$ then $\exists h \in G, h \neq e$ such that $\rho(h) = 7$	
	Hence $K = \langle h \rangle$ is a subgroup of G of order 7.	-
		6
<i>f</i>)	Check whether $(\mathbb{Q}, +)$ and (\mathbb{Q}^+, \cdot) are isomorphic.	1
Ans	Suppose $\phi: (\mathbb{Q}, +) \to (\mathbb{Q}^*, \cdot)$ is isomorphism.	
	As $-1 \in \mathbb{Q}^* \exists a \in \mathbb{Q}$ such that $\phi(a) = -1$	
	$-1 = \phi(a) = \phi\left(\frac{1}{2}a + \frac{1}{2}a\right) = \phi\left(\frac{1}{2}a\right) \phi\left(\frac{1}{2}a\right) = \left[\phi\left(\frac{1}{2}a\right)\right]^2$	
	Let $\phi\left(\frac{1}{2}a\right) = b \in \mathbb{Q}^*$ then $b^2 = -1$	_
	Which is contradiction, square of no rational number is -1 .	5
	(any other example may be taken)	
