Examination	:	SYBA_Semester IV
Exam Date	:	02-05-2019

Subject : Mathematics (Paper III) Q.P.Code : 66043

(3 H	3 Hours) ['			rks: 100]	
Note	e: (i) A (ii)H	All questions are compulsory. Figures to the right indicate r	narks	for respective parts.	
Q.1	Choo	ose correct alternative in each	n of th	e following (2	20)
i.	Let ((<i>G</i> ,) be a group such that \forall	<i>x</i> , y ∈	G , $(xy)^n =$ then	
	(a)	е	(b)	$x^n y^n$ if and only if <i>G</i> is abelian	
	(c)	$(xy)^{-1}$	(d)	None of the above	
	Ans	(b) $x^n y^n$ if and only if G	is ab	elian	
ii.	The	set U_{10} forms a group under	multi	plication. Then the elements of U	I ₁₀ are
	(a)	$\{\bar{1}, \bar{3}, \bar{7}, \bar{9}\}$	(b)	{ī, ī,, 9}	
	(c)	{1}	(d)	None of the above	
	Ans	(a) $\{\overline{1}, \overline{3}, \overline{7}, \overline{9}\}$			
iii.	Let S_4 denote the permutation group on 4 symbols. Then $ S_4 =$				
	(a)	24	(b)	4	
	(c)	16	(d)	None of the above	
	Ans	(a) 24			
iv.	G is a	a cyclic group having exactly	3 sub	groups namely <i>G</i> itself, { <i>e</i> } and a	
	subg	roup of order 7. Then order o	of G is		
	(a)	14	(b)	49	
	(c)	7 p where p is any prime	(d)	cannot say	
	Ans	(b) 49			
v.	Let (G be a cyclic group of infinite	order.	Then the number of elements of	finite
	orde	r in G is			
	(a)	0	(b)	1	
	(c)	2	(d)	infinite	
	Ans	(b) 1			
vi.	Let ($G = \langle a \rangle$ and order of G be 40.	Then t	the elements of order 10 in G are	
	(a)	a^4 , a^8 , a^{12} , a^{16}	(b)	<i>a</i> ⁴ , <i>a</i> ¹² , <i>a</i> ²⁸ , <i>a</i> ³⁶	

	(c)	a^4 , a^{16} , a^{24} , a^{32}	(d)	a^4 , a^8 , a^{24} , a^{28}			
	Ans	(b) a^4 , a^{12} , a^{28} , a^{36}					
vii.	Suppose $a \in G$ such that $o(a) = 20$ then number of cosets of $\langle a^5 \rangle$ in $\langle a \rangle$ is						
	(a)	3	(b)	4			
	(c)	5	(d)	None of these			
	Ans	(c) 5					
viii.	Let H	H and K be subgroups of G	such	that $o(H) = 12$ and $o(K) = 35$ then			
	$o(H \cap$	K) is					
	(a)	2	(b)	1			
	(c)	3	(d)	None of these			
	Ans	(b) 1					
ix.	Let <i>G</i> be a cyclic group of order 7 and $\phi: G \to G$ given by $\phi(x) = x^4$, then						
	(a)	ϕ is not a group homomorphism.					
	(b)	ϕ is a group homomorphism	whic	h is not one –one.			
	(c)	ϕ is a group homomorphism	whic	h is not onto.			
	(d)	None of these					
	Ans	(d) None of these					
x.	Let ($G = D_n, n \in \mathbb{N}$. Define $f: G \longrightarrow \{$	1, -1	} by $f(x) = 1$ if x is a rotation = -1 if x is reflection			
	then	<i>kerf</i> is a subgroup of <i>G</i> contained and <i>G</i> co	ainin	g only			
	(a)	Reflection	(b)	Rotation and reflection			
	(c)	Rotation	(d)	None of these			
	Ans	(c) Rotation					
Q2.	Atter	npt any ONE question from t	he fo	lowing: (08)			
a)	i.	Define Subgroup. Hence or	other	wise show if H and K are the subgroups			

of a group *G*. Then $H \cup K$ is a subgroup if and only if $H \subseteq K$ or $K \subseteq H$.

Ans	Solution Suppose H, and H, are two subgroups of a group	
	G. Let $H_1 \subset H_2$ or $H_2 \subset H_1$. Then $H_1 \sqcup H_2 \Longrightarrow H_3$ or H_1 . But H_1, H_2	_
	are subgroups and therefore $H_1 \cup H_2$ is also a subgroup.	2
	Conversely eveness II is I to a subseque To prove that	
	$H_1 \subset H_2$ or $H_2 \subset H_1$.	
	Let us assume that H_1 is not a subset of H_2 and H_2 is also	
	not a subset of H_1 .	
	Now H_1 is not a subset of $H_2 \Rightarrow \exists a \in H_1$ and $a \notin H_2$ (1)	0
	and H_2 is not a subset of $H_1 \Rightarrow \exists b \in H_2$ and $b \notin H_1$ (2) From (1) and (2) we have $a \in H \sqcup H_1$ and $b \in H \sqcup H_2$.	Z
	Since $H_1 \cup H_2$ is a subgroup, therefore $ab=c$ (say) is also an	
	element of $H_1 \cup H_2$.	1
	But $ab = c \in H_1 \cup H_2 \Rightarrow ab = c \in H_1$ or H_2 .	1
	Suppose $ab = c \in H_1$. Then $b = c^{-1} c \in H$ for H is a subgroup	
	therefore $a \in H_1 \Rightarrow a^{-1} \in H_1$	1
	But from (2), we have $b \notin H_1$. Thus we get a contradiction.	T
	Again suppose $ab = c \in H_2$.	
	Then $a=cb^{-1} \in H_2$ [:: H_2 is a subgroup,	1
	But from (1) we have $a \notin H$. Thus, here also we get a set	T
	tradiction. (1) , we have $u \notin M_2$. Thus here also we get a con-	
	Hence either $H_1 \subseteq H_2$ or $H_2 \subseteq H_1$.	1
ii.	Let G be a group, $a, b \in G$ such that $o(a) = m$, $o(b) = n$	and $ab = ba$. If
	(m, n) = 1 then $a(ab) = mn$	
	(m, n) = 1 then $O(ub) = mn$.	
Ans	Since $o(a) = n \implies a^n = e$ (*)	
	Consider $(ab)^{mn} = (ab) \cdot (ab) \dots (ab)$	1
	$= (\mathbf{a} \cdot \mathbf{a} \dots \mathbf{a}) \cdot (\mathbf{b} \cdot \mathbf{b} \dots \mathbf{b}) \text{ as } \mathbf{a}\mathbf{b} = \mathbf{b}\mathbf{a}$	
	$= a^{mn} \cdot b^{mn}$	
	$= (a^n)^m \cdot (b^m)^n$	
	$= e^{\mathbf{m}} \cdot e^{\mathbf{n}}$ by (*)	0
	= e Let $o(ab) = r$	Z
	r mn (1)	
	\Rightarrow (ab) ^r = e	
	$a^r \cdot b^r = e$ (as $ab = ba$)	
	$a^r = b^{-r}$	2
	$\therefore (\mathbf{a}^{\mathbf{r}})^{\mathbf{m}} = (\mathbf{b}^{\mathbf{r}})^{\mathbf{m}}$	
	\Rightarrow (a ^r) ^m = (b ^m) ^{-r} = e	_
	\Rightarrow (a) ^{rm} = e and o (a) = n (as o (b) = m)	1
	\Rightarrow n rm \Rightarrow n r as (n, m) = 1.	
	Similarly we can show m r.	ч
	As $(n, m) = 1 \Rightarrow nm r$ (2)	1
	: By (1), (2) $r = mn = o (ab)$	1

Q.2	Atter	mpt any TWO questions from the following:	(12)
b)	i.	Show that (\mathbb{Q}^*, o) is a group, where $a \circ b = \frac{ab}{6}$, for $a, b \in \mathbb{Q}^*$.	
	Ans	Closure	2
		Associative trivial	
		identity = $e = 6$	2
		Inverse of $a \in \mathbb{Q}^*$ is $b = \frac{36}{a}$	2
	ii.	Let G be an Abelian group and n be a fixed positive integer.	
		Let $G^n = \{g^n g \in G\}$. Prove that G^n is a subgroup of G .	
	Ans	Let $g_1^n, g_2^n \in G^n$	
		$g_1^n (g_2^n)^{-1} = g_1^n (g_2^{-1})^n = (g_1 g_2^{-1})^n$ (: G is abelian)	2
		Hence, $g_1^n (g_2^n)^{-1} \in G^n$ (: $g_1 g_2^{-1} \in G$)	2
	iii.	By 1- step test G^n is a subgroup of <i>G</i> . Let $\alpha = (1\ 2\ 6)(6\ 3\ 4)(5\ 6\ 2)$ and $\beta = (1\ 5\ 4)(3\ 1\ 2\ 4)$ in S_6	2
		p) Write α and β as a product of disjoint cycles	
		q) Is $O(\alpha\beta) = O(\alpha)O(\beta)$? Justify.	
	Ans	p) $\alpha = (1 \ 2 \ 5 \ 3 \ 4), \ \beta = (1 \ 2)(3 \ 5 \ 4)$	2
		q) $O(\alpha) = 5$, $O(\beta) = 2 \times 3 = 6 \implies O(\alpha) O(\beta) = 30$ $\alpha\beta = (15) \implies O(\alpha\beta) = 2$ $\therefore O(\alpha\beta) \neq O(\alpha)O(\beta)$	
		Note that α and β are not disjoint.	4
	iv.	If $a^2 = e$, $\forall a \in G$ then show that G is abelian group.	
	Ans	$(ab)(ba) = ab^2a = aea = a^2 = e$	2
		But $(ab)(ab) = e$	2
		By uniqueness of inverse $ab = ba$	2
Q3.	Atter	mpt any ONE question from the following:	(08)
a)	i.	Let G be a finite cyclic group of order 'n' then prove that G has a	unique
		subgroup of order 'd' for each divisor d of n .	
	Ans	<i>G</i> is a finite cyclic group of order 'n' generated by ' <i>a</i> ' $G = \langle a \rangle, O(a) = n$ Let $d n \therefore n = dd_1$	

Consider $H = \langle a^{\frac{n}{d}} \rangle = \langle a^{d_1} \rangle$ $O(a^{d_1}) = \frac{n}{(n, d_1)} = \frac{n}{d_1} = d$ $\therefore H = \langle a^{\frac{n}{d}} \rangle$ is a subgroup of order d 4 Uniqueness: Let \hat{H}' be any other subgroup of order d We know that H' is generated by a^m where m is the smallest positive integer such that $a^m \in H'$ $H' = < a^m >$ $\exists ! q, r s. t n = mq + r, where r = 0 or r < m$ If r < m then $a^r = (a^m)^{-q} \in H'$ Which is a contradiction because m is the smallest positive integer such that $a^m \in H'$ n = mqO(H') = d $\begin{array}{l}
0(n) = a \\
0(a^m) = d \\
\frac{n}{(n,m)} = d \\
\frac{n}{m} = d
\end{array}$ 4 $\therefore H' = < a^m > = < a^{\frac{n}{d}} > = H$

List all generators and all subgroups of the cyclic group $G = \langle a \rangle$ of order ii. 16.

Ans
$$G = \langle a \rangle, O(G) = O(a) = 16$$

Generators
 $a^{1}, a^{3}, a^{5}, a^{7}, a^{11}, a^{13}, a^{15}$ 2
Subgroups
 $1|16 \exists !$ subgroup of order 1 namely
 $H_{1} = \langle a^{\frac{16}{1}} \rangle = \{e\}$
 $2|16 \exists !$ subgroup of order 2 namely
 $H_{2} = \langle a^{\frac{16}{2}} \rangle = \langle a^{8} \rangle = \{a^{8}, e\}$
 $4|16 \exists !$ subgroup of order 4 namely
 $H_{3} = \langle a^{\frac{16}{4}} \rangle = \langle a^{4} \rangle = \{a^{4}, a^{8}, a^{12}, e\}$
 $8|16 \exists !$ subgroup of order 8 namely
 $H_{4} = \langle a^{\frac{16}{8}} \rangle = \langle a^{2} \rangle = \{a^{2}, a^{4}, a^{6}, a^{8}, a^{10}, a^{12}, a^{14}, e\}$
 $16|16 \exists !$ subgroup of order 16 namely
 $H_{5} = \langle a^{\frac{16}{16}} \rangle = \langle a^{1} \rangle = G$ 6

- Q3. Attempt any **TWO** questions from the following:
- b) i. If G is infinite cyclic group generated by a then show that G has exactly two generators 'a' and ' a^{-1} '.

(12)

2

- Ans *G* is infinite cyclic group generated by *a* Let *b* be a generator of *G* $\therefore < a > = < b >$ $a \in < a > \subseteq < b > \therefore a = b^n$, for some $n \in \mathbb{Z}$ $b \in < b > \subseteq < a > \therefore b = a^m$, for some $m \in \mathbb{Z}$ $a = b^n = (a^m)^n = a^{mn}$ $\therefore mn = 1$ ($\because a$ is of infinite order) m, n = 1 or -1 $b = a^1 \text{ or } a^{-1}$ $\therefore G$ has exactly two generators ' *a*' and ' $a^{-1'}$ 6
- ii. Let $U(n) = \{\bar{x} \mid x \in \mathbb{N}, (x, n) = 1, 1 \le x \le n\}$ under multiplication modulo *n*. Determine which of the following groups are cyclic. Justify your answer.

(p)
$$U(5)$$
 (q) $U(8)$
Ans $U(5) = \{1,2,3,4\}$
 $U(8) = \{1,3,5,7\}$

As O(2) = 4 : U(5) = <2> 2

As
$$O(3) = O(5) = O(7) = 2 : U(8)$$
 is not cyclic 2

iii. Prove that every subgroup of a cyclic group is cyclic.

Let *H* be a subgroup of a cyclic group $G = \langle a \rangle$ Ans Claim: H is generated by a^m where m is the smallest positive integer such 2 that $a^m \in H$ T.P.T $H = < a^m >$ $H \supseteq < a^m > \dots(1)$ 1 T.P.T $H \subseteq \langle a^m \rangle$ Let $b = a^k \in H$ for some k $\exists ! q, r s. t k = mq + r, where r = 0 or r < m$ If r < m then $a^r = a^{k-mq} = a^k (a^m)^{-q} \in H$ which is a contradiction because *m* is the smallest positive integer such that $a^m \in H$ r = 0k = mq $b = a^k = a^{mq} \in \langle a^m \rangle$ $H \subseteq \langle a^m \rangle \dots \langle 2 \rangle$ 3 $H = \langle a^m \rangle \cdots$ from (1) and (2) ∴Every subgroup of a cyclic group is cyclic

iv. Prove or disprove: $G = \{(1,1), (1,-1), (-1,1), (-1,-1)\}$ is a group under the operation (a,b)(c,d) = (ac,bd) but not a cyclic group.

Ans

	(1,1)	(1,-1)	(-1,1)	(-1,-1)
(1,1)	(1,1)	(1,-1)	(-1,1)	(-1,-1)
(1, -1)	(1,-1)	(1,1)	(-1, -1)	(-1,1)
(-1,1)	(-1,1)	(-1, -1)	(1,1)	(1, -1)
(-1, -1)	(-1, -1)	(-1,1)	(1,-1)	(1,1)

G is closed under the given operation Identity element = e = (1,1)Inverse of each element is itself \therefore G is a group under the given operation

As order of each element is 2 \therefore *G* is not cyclic

Q4.	Atter	mpt any ONE question from the following: (08)			
a)	i.	State and Prove Lagrange's theorem for finite group.			
	Ans	$\underline{\text{Statement}}$: Let <i>G</i> be a finite group and <i>H</i> is subgroup of G then	1M		
		o(H) o(G). <u>Proof</u> : Since G is finite group it has finite			
		number of left (or right) cosets.	2M		
		Claim1 : $f: H \rightarrow aH$ is bijective using $f(h) = ah$, $h \in H$			
		Claim1 gives $o(aH) = o(H), \forall a \in G$ (1)			
		Claim2 : Any two cosets are either identical or disjoint.	2M		
		Suppose a_1H, a_2H, \dots, a_kH are all distinct and disjoint cosets of			
		<i>H</i> in <i>G</i> (2)			
		Claim3: $G = \bigcup_{i=1}^{k} a_i H$	2M		
		Using (2) and claim3 we get $o(G) = o(a_1H) + o(a_2H) + \dots + + o(a_2H) + \dots + o(a_2H) +$			
		$o(a_k H)$	1M		
		Using (1) $o(G) = o(H) + o(H) + \dots + o(H), k$ -times			
		$o(G) = k o(H) \implies o(H) o(G).$			
	ii.	Let $f: G \to G'$ is onto group homomorphism. then show that			
		(p) $f(e) = e'$, where e and e' are identities of G and G' respectively	•		
(q) $f(a^{-1}) = [f(a)]^{-1}, \forall a \in G$					
		(r) $f(a^m) = [f(a)]^m$, $\forall a \in G$, $m \in \mathbb{N}$			
	Ans	(p) Since $e \cdot e = e \implies f(e \cdot e) = f(e) \implies f(e) \cdot f(e) = f(e) \cdot e'$			

2M

4

1

1

$$(q) :: a a^{-1} = e \implies f(a \cdot a^{-1}) = f(e)$$

$$\implies f(a) \cdot f(a^{-1}) = e' \implies f(a^{-1}) = [f(a)]^{-1} \qquad 2M$$
(r) using induction, For $m = 1$, $f(a^{1}) = f(a)$ and $[f(a)]^{1} = f(a)$
Suppose for $m = k$, $f(a^{k}) = [f(a)]^{k}$
Consider $f(a^{k+1}) = f(a^{k}) f(a) = [f(a)]^{k} f(a) = [f(a)]^{k+1}$
Hence $f(a^{m}) = [f(a)]^{m}$, $\forall a \in G, m \in \mathbb{N}$

$$4M$$

- Q4. Attempt any **TWO** questions from the following: (12)
- b) i. Let G be a group of prime order p. If H and K are subgroups of G then show that either $H \cap K = \{e\}$ or H = K.
 - Ans Since *H* and *K* be two subgroups of *G*. By Lagrange's theorem , o(H)|o(G) and $o(K)|o(G) \Rightarrow o(H)|p$ and o(K)|pAs *p* is prime. o(H) = o(K) = 1 or *p* If $o(H) = o(K) = 1 \Rightarrow H = K = \{e\}$ ------ (1) If o(H) = o(K) = p = o(G), also *H* and $K \subseteq G$ gives H = K = G -- (2) (1) and (2) gives either $H \cap K = \{e\}$ or H = K. 6M
 - ii. Let *G* be a group of order pq where p and q are distinct prime integers. Show that every subgroup $H \neq G$ is a cyclic subgroup of *G*.
 - Ans Since *H* is subgroups of *G* By Lagrange's theorem , $o(H)|o(G) \Rightarrow o(H)|pq$ As *p* and *q* are distinct primes and $H \neq G \Rightarrow o(H) = 1$ or *p* or *q* 3M If $o(H) = 1 \Rightarrow H = \{e\} \Rightarrow H$ is cyclic. 1M If o(H) = p and *p* is prime $\Rightarrow H$ is cyclic. 1M If o(H) = q and *q* is prime $\Rightarrow H$ is cyclic. 1M if o(H) = q and *q* is prime $\Rightarrow H$ is cyclic. 1M iii. Find the number of group homomorphism from \mathbb{Z}_{20} to \mathbb{Z}_8 .
 - Ans Let $f:\mathbb{Z}_{20} \to \mathbb{Z}_8$ is a group homomorphism. Let $\overline{1} \in \mathbb{Z}_{20}$ then $f(\overline{1})$ defines all homomorphism. Also $o(\overline{1}) = 20$
 - $\bar{1} \in \mathbb{Z}_{20} \text{ and } f(\bar{1}) \in \mathbb{Z}_8 \Longrightarrow o(f(\bar{1})) \mid o(\mathbb{Z}_8) \Longrightarrow o(f(\bar{1})) \mid 8 \qquad \dots \dots (1)$ As f is homomorphism $\Longrightarrow o(f(\bar{1})) \mid o(\bar{1}) \implies o(f(\bar{1})) \mid 20 \qquad \dots \dots \dots (2)$

(1) and (2)
$$\Rightarrow o(f(1)) | \gcd(20,8) \Rightarrow o(f(1)) | 4$$

 $\Rightarrow o(f(\bar{1})) = 1, 2 \text{ or } 4$ Since $f(\bar{1}) \in \mathbb{Z}_8 \Rightarrow$ there are 4 elements $\{\bar{0}\}, \{\bar{4}\}, \{\bar{2}, \bar{6}\}$ of order 1, 2, 4 respectively. Hence there are **four** homomorphism.

- iv. Define automorphism of groups. Let $a \in G$, show that $f_a: G \to G$ defined by $f_a(x) = axa^{-1}$, $\forall x \in G$ is an automorphism.
- Ans An automorphism is an isomorphism from a group G to itself. 1M Now $f_a(x) f_a(y) = (axa^{-1}) (aya^{-1}) = axa^{-1}aya^{-1}$ $= a(xy)a^{-1} = f_a(xy)$ Now $f_a(x) = f_a(y) \Rightarrow axa^{-1} = aya^{-1} \Rightarrow x = y$ using LCL & RCL Let $y \in G$ and $a \in G$ then $a^{-1}ya \in G$ such that $f_a(a^{-1}ya) = aa^{-1}yaa^{-1} = y$ 5M Therefore f_a is an automorphism.
- Q5. Attempt any **FOUR** questions from the following: (20)
- a) State and prove necessary and sufficient condition for a non empty subset H of a group G to be a subgroup of G.
- Ans A non empty subset *H* of a group *G* is a subgroup of *G* if and only if $ab^{-1} \in H$ for $a, b \in H$ Identity $a \in H \therefore aa^{-1} \in H \therefore e \in H$ Inverse $e, a \in H \therefore ea^{-1} = a^{-1} \in H$ Closure

for $a, b \in H \Longrightarrow a, b^{-1} \in H \implies a(b^{-1})^{-1} \in H \implies ab \in H$

b) Let $G = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\}$. Construct composition table

1

for *G* under multiplication of 2×2 matrices.

	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$
$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$

Ans

$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

5

3

6M

- *c*) Prove that every cyclic group is abelian.
- Ans Let *G* be a cyclic group generated by a'Let $x, y \in G$ $\therefore x = a^{i}$, for some $i \in \mathbb{Z}$ and $y = a^{j}$, for some $j \in \mathbb{Z}$ $xy = a^{i}a^{j} = a^{i+j} = a^{j+i} = a^{j}a^{i} = yx$ $\therefore G$ is abelian 5
- *d*) Let *G* be a cyclic group of order 42. Find the number of elements of order 6 and the number of elements of order 7 in *G*. Clearly state the result used.

Ans Result:

If *G* is a cyclic group of order n generated by *a* then for every divisor *d* of *n* there 2 are $\varphi(d)$ elements of order *d* 6|42 \therefore number of elements of order $6 = \varphi(6) = 2$

- 7|42 \therefore number of elements of order $7 = \varphi(7) = 6$
- e) Prove that every group of order 49 contains a subgroup of order 7.
- Ans Let G be a group of order 49.

If *G* is cyclic then $\exists a \in G$ such that o(a) = 49Now $o(a^7) = \frac{o(a)}{(o(a), 7)} = \frac{49}{(49,7)} = 7$ then $H = \langle a^7 \rangle$ is subgroup of *G* of order 7 If *G* is not cyclic then *G* doesn't have any element of order 49.

Also o(a) | o(G), $\forall a \in G$ then $\exists b \in G$, $b \neq e$ such that o(b) = 7

Hence $K = \langle b \rangle$ is a subgroup of *G* of order 7.

f) Let *G* be a group. Show that $f: G \to G$ defined by $f(x) = x^2, \forall x \in G$ is an homomorphism if and only if

Ans Since f is homomorphism then $f(xy) = f(x)f(y) \Rightarrow (xy)^2 = x^2 y^2$ $\Rightarrow (xy)(xy) = xx yy \Rightarrow x(yx)y = x(xy)y \Rightarrow yx = xy \Rightarrow G$ is abelian. 3M Conversely, as G is abelian $f(xy) = (xy)^2 = x^2 y^2 = f(x)f(y)$ Therefore f is homomorphism. 2M