Examination : SYBA_Semester IV Exam Date : 04-05-2019

Subject : Mathematics (Paper III) Q.P.Code : 66042

(3 Hours)

[Total Marks: 100]

Note: (*i*) All questions are compulsory.

	.,	the right indicate marks for respective parts.		
	-			(20)
Q.1 <i>i</i> .		e correct alternative in each of the following		(20)
ι.		$\equiv G$ such that $O(a) = n$ then $a^m = e$ then	(1-)	
(0)	(a)	<i>n/m</i>	(b)	$m \mid n$ None of the above
(a)	(c)		(d)	None of the above
ii.	The set	t U_n is forms a group under the binary operated by U_n is forms a group under the binary operated by U_n is formed by U_n and U_n is formed by U_n and U_n and U_n are the binary operated by U_n are the binary operated by U_n and U_n are the binary operated by U_n	tion	
	(a)	·+'	(b)	< <u>·</u> ··
(c)	(c)	۰ ۰ ۲	(d)	None of the above
iii.	Let S_n	denote the permutation group. Then $ S_n =$		
	(a)	n	(b)	2 <i>n</i>
(c)	(c)	n!	(d)	None the above
iv.	Let Z(C	G) be the center of the group G. Then $Z(G)$ is	defined	1 as
	(a)	$\{x \mid \forall a \in G, ax = xa\}$	(b)	$\{x \mid \forall a \in G, ax \neq xa\}$
(a)	(c)	$\{x \mid \forall a \in G, ax \notin G\}$	(d)	None of the above
v.	Suppos	se G is a cyclic group such that G has exactly	three su	bgroups viz. G , $\{e\}$ and a subgroup of order 5. Then
	the ord	er of G is		
	(a)	5	(b)	10
(c)	(c)	25	(d)	125
vi.	The nu	mber of subgroups of $(\mathbb{Z}_{20}, +)$ is		
	(a)	6	(b)	5
(a)	(c)	3	(d)	2
vii.	The ge	nerators of $20\mathbb{Z} \cap 30\mathbb{Z}$ are		
	(a)	60, -60	(b)	10, -10
(a)	(c)	20, 30	(d)	None of the above
viii.	Let H	be a subgroup of G and $a, b \in G$ then aH	= bH	
	(a)	$a \in H$	(b)	$ab \in H$
(c)	(c)	$a^{-1}b \in H$	(d)	None of these
ix.	Let ϕ :	$\mathbb{Z}_{12} \to \mathbb{Z}_{12}$ is a homomorphism given by ϕ	(x) = 3	βx then $ker\phi =$
	(a)		(b)	$\{\overline{0},\overline{4},\overline{8}\}$
(b)	(c)	$\{\overline{0},\overline{4}\}$	(d)	None of these
<i>x</i> .		mber of group homomorphism of V_4 (Klien's	four g	
	(a)	4	(b)	2
(d)	(u) (c)	3	(d)	6
Q2.		ot any ONE question from the following:	(4)	(08)
a)	i.	Let H and K be the subgroup of a group	G. Th	en prove that HK is a subgroup of G if and only if
		HK=KH.		
		1		
		1		
		1		
1		1		

	Let H, K and HK be subgroups of G. 1
	We will have to show that HK = KH
	Let any $x \in H K$ Since $H K$ is a subgroup, $x^{-1} \in H K$
	$\Rightarrow x^{-1} = ab \text{ where } a \in H, b \in K$
	(x - (a b) - 1)
	$\Rightarrow x = b^{-1} a^{-1} \in K H$
	$ \begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $
	$By(1),(2) \Pi K = KH$
	if HK is a subgroup of G 1
	Conversely Suppose HK = KH
	We will prove that HK is a subgroup of G
	Consider any $x, y \in HK$
	$x \in H K \Rightarrow x = h_1 k_1$ for some $h_1 \in H$, $k_1 \in K$
	$y \in HK \Rightarrow y = h_2 k_2$ for some $h_2 \in H$, $k_2 \in K$ 1
	$ \begin{aligned} xy^{-1} &= (h_1 k_{1}) (h_2 k_2) \\ &= (h_1 k_1) (k_2^{-1} h_2^{-1}) \end{aligned} $
	$=h_1(k_1, k_2^{-1}, h_2^{-1})$
	$k_1, k_2 \in K$ and K is a subgroup
	\Rightarrow k ₁ k ₂ -1 \in K
	Let $k_1 k_2^{-1} = k_3$ for some $k_3 \in K$ 1
	$\therefore \qquad xy^{-1} = h_1 k_3 h_2^{-1} = h_1 (k_3 h_2^{-1})$
	Now, $k_3 h_2^{-1} \in KH = HK$
	$\Rightarrow k_3 h_2^{-1} = h_3 k_4 \text{ for same } h_3 \in H, k_4 \in K$
	$\therefore \qquad xy^{-1} = h_1(h_3 k_4)$
	$= (h_1 h_3)k_4 \in H K $ Thus for any $k_1 \in H K$ 1
	Thus, for any x, y \in HK xy ⁻¹ \in HK
	\Rightarrow HK is a subgroup of G
ii.	Show that $(\mathbb{Z}, *)$ is a group where '*' is defined as $a * b = a + b - 4$, $a, b \in \mathbb{Z}$
	(1) Consider any $a, b \in \mathbb{Z}$, $a * b = a + b - 4 \in \mathbb{Z}$
	Implies $\mathbb Z$ is closed with respect to *
	(2) Consider any a, b, $c \in \mathbb{Z}$
	(2) Consider any a, b, $c \in \mathbb{Z}$ a * (b * c) = a * (b + c - 4)
	(2) Consider any a, b, $c \in \mathbb{Z}$ a * (b * c) = a * (b + c - 4)
	(2) Consider any a, b, $c \in \mathbb{Z}$ a * (b * c) = a * (b + c - 4)
	(2) Consider any a, b, $c \in \mathbb{Z}$ a * (b * c) = a * (b + c - 4)
	(2) Consider any a, b, $c \in \mathbb{Z}$ a * (b * c) = a * (b + c - 4) 1
	(2) Consider any a, b, $c \in \mathbb{Z}$ a * (b * c) = a * (b + c - 4) 1
	(2) Consider any a, b, $c \in \mathbb{Z}$ a * (b * c) = a * (b + c - 4) 1
	(2) Consider any a, b, $c \in \mathbb{Z}$ a * (b * c) = a * (b + c - 4) 1
	(2) Consider any a, b, $c \in \mathbb{Z}$ a * (b * c) = a * (b + c - 4) 1
	(2) Consider any a, b, $c \in \mathbb{Z}$ a * (b * c) = a * (b + c - 4) 1
	(2) Consider any a, b, $c \in \mathbb{Z}$ a * (b * c) = a * (b + c - 4) 1
	(2) Consider any a, b, $c \in \mathbb{Z}$ a * (b * c) = a * (b + c - 4) 1
	(2) Consider any a, b, $c \in \mathbb{Z}$ a * (b * c) = a * (b + c - 4) 1
	(2) Consider any a, b, $c \in \mathbb{Z}$ $a^* (b^* c) = a^* (b + c - 4)$ 1 1
	(2) Consider any a, b, $c \in \mathbb{Z}$ a * (b * c) = a * (b + c - 4) 1
	(2) Consider any a, b, $c \in \mathbb{Z}$ $a^* (b^* c) = a^* (b + c - 4)$ 1 1
	(2) Consider any a, b, $c \in \mathbb{Z}$ $a^* (b^* c) = a^* (b + c - 4)$ 1 1
	(2) Consider any a, b, $c \in \mathbb{Z}$ $a^* (b^* c) = a^* (b + c - 4)$ 1 1
	(2) Consider any a, b, $c \in \mathbb{Z}$ $a^* (b^* c) = a^* (b + c - 4)$ 1 1
	(2) Consider any a, b, $c \in \mathbb{Z}$ $a^* (b^* c) = a^* (b + c - 4)$ 1 1
	(2) Consider any a, b, $c \in \mathbb{Z}$ $a^* (b^* c) = a^* (b + c - 4)$ 1 1
	(2) Consider any a, b, $c \in \mathbb{Z}$ $a^* (b^* c) = a^* (b + c - 4)$ 1 1
	(2) Consider any a, b, $c \in \mathbb{Z}$ $a^* (b^* c) = a^* (b + c - 4)$ 1 1
	(2) Consider any a, b, c ∈ Z a*(b*c) = a*(b+c-4) 1 2
	(2) Consider any a, b, $c \in \mathbb{Z}$ $a^* (b^* c) = a^* (b + c - 4)$ 1 1
	(2) Consider any a, b, c ∈ Z a*(b*c) = a*(b+c-4) 1 2
	(2) Consider any a, b, c ∈ Z a*(b*c) = a*(b+c-4) 1 2

		$= a + (b + c - 4) - 4 \qquad \cdots (by d)$ = a + b + c - 8	
		Also $(a * b) * c = (a + b - 4) * c$	
		= a + b - 4 + c - 4	
		= a + b + c - 8	
		= a * (b * c) = (a * b) * c	
		Implies $*$ is associative in \mathbb{Z}	
		(3) Consider any $a \in \mathbb{Z}$.	
		We have to find an element $e \in \mathbb{Z}$ such that a * $e = a$.	
		i.e. $a + e - 4 = a$	
		$e = 4 \in \mathbb{Z}$	
		This $\exists e = 4 \in \mathbb{Z}$ such that $a * e = a + e - 4 = a + 4 - 4 = a$	
		Also, $e^* a = e + a - 4 = 4 + a - 4 = a$	
		so, $4 \in \mathbb{Z}$ is the identity element w .r. t *	
		(4) Consider any $a \in \mathbb{Z}$	
		We have to find $b \in \mathbb{Z}$ such that $a * b = e = 4$	
		i.e. $a + b - 4 = 4$	
		$\mathbf{a} + \mathbf{b} = 8$	
		$b = 8 - a \in \mathbb{Z}$ (as $a \in \mathbb{Z}$)	
		Thus, $\forall a \in \mathbb{Z}, \exists b = 8 - a \in \mathbb{Z}$ such that	
		a * b = a * (8 - a)	
		= a + 8 - a - 4 $= 4$	
		Also, $b * a = (8 - a) * a$	
		= 8 - a + a - 4	
		=4	
		Thus $\forall a \in \mathbb{Z}, \exists b = 8 - a \in \mathbb{Z}$ such that	
		a * b = b * a = e	
		\therefore Z satisfies all the properties of a group with respect to *	
		$\therefore (\mathbb{Z},)$ is a group	
		Also, $a * b = a + b - 4 = b + a - 4$	
		$= b * a, \forall a, b \in \mathbb{Z}$	
		$(\mathbb{Z}, *)$ is an infinite Abeliàn group.	
Q.2	Attemr	ot any TWO questions from the following: (12)	
b)	i.	Let G be a group. Prove that	
~ /		p) Identity element of G is unique.	
		q) The inverse of every element in <i>G</i> is unique.	
	Ans	p) Let there are two identities <i>e</i> and <i>e'</i>	
		$xe = ex = e \ \forall x \in G$	
		$xe' = e'x = e' \forall x \in G$	
		$\therefore e'e = ee' = e$ and $ee' = e'e = e'$	2
		\therefore e=e' q) Let $x \in G$ has two inverses y and y'	3
			3
\vdash	ii.	$y = y + e = y + (x + y') = (y + x) + y' = e + y' = y'$ Prove that \mathbb{Z}_p^* is a group under multiplication modulo <i>p</i> , where <i>p</i> is prime.	
\vdash	Ans	T.P.T: - \mathbb{Z}_p^* is a group.	
		Closure:	
		Let $\overline{a}, \overline{b} \in \mathbb{Z}_p^*, \ \overline{a}, \overline{b} = \overline{ab}$	
		If $\overline{ab} = \overline{0} \Rightarrow p ab \Rightarrow p a \text{ or } p b \Rightarrow \overline{a} = \overline{0} \text{ or } \overline{b} = \overline{0}$, which is not true	
		$\overline{ab} \neq \overline{0}, \therefore \overline{a}. \overline{b} \in \mathbb{Z}_n^*$	
		Associative is trivial	2
		Inverse:	3
		Let $\bar{a} \in \mathbb{Z}_p^*, 1 \le a \le p-1$	
		$\exists m, n \in \mathbb{Z}$, such that $am + pn = 1$	
		$\overline{am + pn} = \overline{1}$	3
		$\overline{a}.\overline{m} = \overline{1} \div \overline{m}$ is the multiplicative inverse of \overline{a} . (Note that $\overline{m} \neq \overline{0}$)	
	iii.	Let $GL_2(\mathbb{R})$ denote the group of all nonsingular 2×2 matrices with real entries.	

		determine whether $H = \{ \begin{pmatrix} a & b \end{pmatrix} \in GL(\mathbb{R}) \mid ad = bc = 1 \}$ is a subgroup of the group $GL(\mathbb{R})$)					
	A	determine whether $H = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{R}) \mid ad - bc = 1 \right\}$ is a subgroup of the group $GL_2(\mathbb{R})$). 2					
	Ans	Let $A, B \in H \therefore A = 1$ and $ B = 1$, for some $n, m \in \mathbb{Z}$ $ AB^{-1} = A B ^{-1} = 1$	2 2					
		$AB^{-1} \in Hby 1 \text{-step test}.$	$\frac{2}{2}$					
	iv.	Define order of an element in a group G. Further prove that for $a \in G$, if $O(a) = nm$ then $O(a^n)$						
	Ans	Define order of an element in a group G. Further prove that for $u \in G$, if $O(u) = htthere or (u)$ Order of an element 'a' of group G is defined as Least positive integer n such that $a^n = e$) — m					
	7 1115	Let $O(a^n) = t$	1					
		$(a^n)^t = e$						
		$a^{nt} = e$						
		nm nt						
		$\therefore m t(1)$						
		$(a^n)^m = a^{nm} = e$						
		But $O(a^n) = t$ $\therefore t \mid m(2)$						
		From (1) and (2)						
		t = m	5					
Q3.	Attem	pt any ONE question from the following: (08)						
a)	i.	Let G be a finite cyclic group of order n generated by 'a' then prove that, a^m is also a generated	or of G if					
		and only if $(m, n) = 1$						
		(\Rightarrow)						
		$G = \langle a^m \rangle \text{T.P.T:} (m, n) = 1$ Let $(m, n) = d$, suppose $d > 1$						
		Let $(m, n) = a$, suppose $a > 1$ d m, d n						
		$m = dd_1, n = dd_2$ for some $d_1, d_2 \in \mathbb{Z}$						
		$(a^m)^{d_2} = a^{md_2} = a^{dd_1d_2} = a^{d_1.(dd_2)} = (a^n)^{(d_1)} = e$						
		$(a^m)^{d_2} = e \& d_2 < n : O(a^m) < n$ which is contradiction to the fact that $G = \langle a^m \rangle : O(G)$) =					
		$O(a^m) = n$						
		Assumption was wrong . Hence, $d = 1$ i.e $(m, n) = 1$						
		$(\Leftarrow)(m,n) = 1, \therefore \exists x, y \in \mathbb{Z} \text{ s. } t mx + ny = 1$						
		T.P.T $G = \langle a^m \rangle$ i.e T.P.T $\langle a \rangle = \langle a^m \rangle$ $\langle a \rangle \supseteq \langle a^m \rangle$ is obvious						
		$a = a^1 = a^{mx+ny} = a^{mx}a^{ny} = a^{mx} = (a^m)^x$						
		$\therefore a \in \langle a^m \rangle \therefore \langle a \rangle \subseteq \langle a^m \rangle$						
	ii.	Let G be a cyclic group of order 18 generated by 'a'. List all generators of G and all subgroups G	of <i>G</i> .					
		$G = \langle a \rangle, O(G) = O(a) = 18$						
		Generators $a^1, a^5, a^7, a^{11}, a^{13}, a^{17}$						
		Subgroups						
		$1 18 \exists ! subgroup of order 1 namely$						
		$H_1 = \langle a^{\frac{18}{1}} \rangle = \{e\}$						
		2 18 ∃! subgroup of order 2 namely						
		$H_2 = \langle a^{\frac{18}{2}} \rangle = \langle a^9 \rangle = \{a^9, e\}$						
		3 18 ∃! subgroup of order 3 namely						
		$H_3 = \langle a^{\frac{18}{3}} \rangle = \langle a^6 \rangle = \{a^6, a^{12}, e\}$						
		6 18 ∃! subgroup of order 6 namely						
		$H_4 = \langle a^{\frac{18}{6}} \rangle = \langle a^3 \rangle = \{a^3, a^6, a^9, a^{12}, a^{15}, e\}$						
		9 18 ∃! subgroup of order 9 namely						
		$H_5 = \langle a^{\frac{18}{9}} \rangle = \langle a^2 \rangle = \{a^2, a^4, a^6, a^8, a^{10}, a^{12}, a^{14}, a^{16}, e\}$						
		18 18 ∃! subgroup of order 18 namely						
		$H_6 = \langle a^{\frac{18}{18}} \rangle = \langle a^1 \rangle = G$						
Q3.	Attem	pt any TWO questions from the following: (12)						
b)	i.	Let G be an infinite cyclic group generated by 'a'. Show that G has infinitely many distinct subg	groups.					
		G is an infinite cyclic group generated by $'a'$						
		$\therefore G = \langle a \rangle, O(a) = infinite$						
		Proof of Claim1: All distinct powers of a are distinct group elements						
		Proof of Claim2: Each Distinct positive powers of <i>a</i> generates distinct subgroups of <i>G</i>						

	ii.	Prove that $H = \left\{ \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} n \in \mathbb{Z} \right\}$ is a cyclic subgroup of $GL_2(\mathbb{R})$.						
		Let $n > 0$						
		$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$						
		$\begin{pmatrix}1 & 1\\ 0 & 1\end{pmatrix}^{-n} = \left(\begin{pmatrix}1 & 1\\ 0 & 1\end{pmatrix}^{-1}\right)^n = \begin{pmatrix}1 & -1\\ 0 & 1\end{pmatrix}^n = \begin{pmatrix}1 & -n\\ 0 & 1\end{pmatrix}$						
		$H = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \rangle$						
	iii.	Prove that every subgroup of a cyclic group is cyclic.						
		Let <i>H</i> be a subgroup of a cyclic group $G = \langle a \rangle$						
		Claim: <i>H</i> is generated by a^m where <i>m</i> is the smallest positive integer such that $a^m \in H$ T.P.T $H = \langle a^m \rangle$						
		$H \supseteq < a^m > \dots(1)$						
		T.P.T $H \subseteq \langle a^m \rangle$						
		Let $b = a^k \in H$ for some k						
		$\exists ! q, r s. t k = mq + r, where r = 0 \text{ or } r < m$						
		If $r < m$ then $a^r = a^{k-mq} = a^k (a^m)^{-q} \in H$ which is a contradiction because <i>m</i> is the smallest positive integer such that $a^m \in H$						
		r = 0						
		k = mq						
		$b = a^k = a^{mq} \in \langle a^m \rangle$						
		$H \subseteq < a^m > \dots (2)$						
		$H = \langle a^m \rangle \cdots$ from (1) and (2)						
	iv.	∴Every subgroup of a cyclic group is cyclic Let $U(n) = {\bar{x} x \in \mathbb{N}, (x, n) = 1, 1 \le x \le n}$ under multiplication modulo <i>n</i> .						
	1	Determine which of the following groups are cyclic. Justify your answer.						
		(p) $U(6)$ (q) $U(7)$						
		$U(6) = \{1,5\}$						
		$U(7) = \{1, 2, 3, 4, 5, 6\}$						
		As $O(5) = 2 :: U(6) = < 5 >$ As $O(3) = 7 :: U(7) = < 3 >$						
Q4.	Attemp	t any ONE question from the following: (08)						
a)	i.	Let <i>H</i> be a subgroup of a group <i>G</i> and $a, b \in G$ then show that						
		(p) $a \in aH$ (q) $aH = bH$ or $aH \cap bH = \emptyset$ (r) $ aH = bH $						
		(p) Since $e \in H \implies ae \in aH \implies a \in aH$ (q) case (i) If $aH \cap bH = \emptyset$ then done						
		Case (i) If $aH \cap bH \neq \emptyset$						
		Let $x \in aH \cap bH$ then for $h_1, h_2 \in H$						
		$\Rightarrow x = ah_1$ and $x = bh_2 \Rightarrow a = xh_1^{-1}$						
		Let $y \in aH \Rightarrow y = ah = xh_1^{-1}h = bh_2h_1^{-1}h \in bH \Rightarrow aH \subseteq bH$ Similarly one can show $hH \subseteq aH \Rightarrow aH = hH$						
		Similarly one can show $bH \subseteq aH \implies aH = bH$ (r) Define a map $f: aH \rightarrow bH$ by $f(ah) = bh$, $h \in H$						
		(r) Define a map $f: aH \to bH$ by $f(ah) = bh$, $h \in H$ Show f is bijective map that gives $ aH = bH $						
	ii.	Define kernel of group homomorphism. If $f: G \to G'$ is group homomorphism then show that kerf is						
 		subgroup of G. Further f is injective if and only if $kerf = \{e\}$.						
		$kerf = \{x \in G/f(x) = e'\} \subseteq G$						
		Since f is group homomorphism $\Rightarrow f(e) = e' \Rightarrow e \in kerf \Rightarrow kerf \neq \emptyset$ Claim : $xy^{-1} \in kerf$, where $x, y \in kerf$						
		$x, y \in kerf \Rightarrow f(x) = e', f(y) = e'$						
		Now $f(xy^{-1}) = f(x)f(y)^{-1} = e' \Longrightarrow kerf$ is subgroup of G.						
		$Claim: kerf = \{e\}$						
		Let $x \in kerf \Rightarrow f(x) = e' \Rightarrow f(x) = f(e) \Rightarrow x = e$ since f is injective $\therefore kerf = \{e\}$						
		Claim: f is injective Let $f(x) = f(x)f(x)f(x)^{-1} = x' \Rightarrow f(x)x^{-1} = x'$						
		Let $f(x) = f(y) \Rightarrow f(x)f(y)^{-1} = e' \Rightarrow f(xy^{-1}) = e'$ $\Rightarrow xy^{-1} \in kerf = \{e\} \Rightarrow xy^{-1} = e \Rightarrow x = y \Rightarrow f$ is injective						
Q4.	Attemn	$\Rightarrow xy = e \ker f = \{e\} \Rightarrow xy = e \Rightarrow x = y \Rightarrow f \text{ is injective}$ t any TWO questions from the following: (12)						
b)	i.	Let G be a group of prime order p. If H and K are subgroups of G then show that either $H \cap K = \{e\}$						
,		or $H = K$.						
l T		Since <i>H</i> and <i>K</i> be two subgroups of <i>G</i> .						

	r						
		By Lagrange's theorem, $o(H) o(G)$ and $o(K) o(G)$					
	$\Rightarrow o(H) p \text{ and } o(K) p$						
		As p is prime. $o(H) = o(K) = 1$ or p					
		If $o(H) = o(K) = 1 \Longrightarrow H = K = \{e\}$ (1)					
		If $o(H) = o(K) = p = o(G)$, also H and $K \subseteq G$ gives $H = K = G$ (2)					
		(1) and (2) gives either $H \cap K = \{e\}$ or $H = K$.					
	ii.	Let $G = \mathbb{R} \times \mathbb{R}$ be a group under binary operation * defined by					
		$(a,b) * (c,d) = (a + c, b + d)$ then show that $H = \{(a,5a)/a \in \mathbb{R}\}$ is subgroup of G. Describe					
		geometrically the left cosets $(2,3) + H$ in G.					
		Clearly H is non-empty subset of G .					
		Claim: $x * y^{-1} \in H$, where $x, y \in H$					
		Let $x = (a, 5a)$ and $y = (b, 5b)$, $a, b \in \mathbb{R}$					
	Now $x * y^{-1} = (a, 5a) * (b, 5b)^{-1} = (a, 5a) * (-b, -5b) = (a - b, 5(a - b)) \in H$ as a						
		Therefore H is subgroup of G.					
		Now the left cosets $(2,3) + H = \{(2 + a, 3 + 5a)/a \in \mathbb{R}\}$ which is a straight line passing through the					
		point (2, 3) and parallel to the line $y = 5x$.					
	iii.	Let G be a group. Show that $f: G \to G$ defined by $f(x) = x^{-1}$,					
		$\forall x \in G$ is an automorphism if and only if G is abelian.					
		Consider $f(xy) = (xy)^{-1} = y^{-1}x^{-1} = f(y)f(x) = f(yx)$ as f is homomorphism					
		Since f is injective, $xy = yx \Rightarrow G$ is abelian.					
		Since f is injective, $xy = yx \Rightarrow 0$ is abelian. Conversely, Consider, as f is abelian $f(xy) = (xy)^{-1} = x^{-1}y^{-1} = f(x)f(y) \Rightarrow f$ is					
		homomorphism $\mathbf{x} \in \mathcal{L}$					
		Let $f(x) = f(y) \Rightarrow x^{-1} = y^{-1} \Rightarrow (x^{-1})^{-1} = (y^{-1})^{-1} \Rightarrow x = y$					
		$\Rightarrow f$ is injective					
		Let $y \in G \Longrightarrow y^{-1} \in G$, Now $f(y^{-1}) = (y^{-1})^{-1} = y \Longrightarrow f$ is sujective					
		Therefore <i>f</i> is automorphism.					
	iv.	Let $f: G \to G'$ is onto group homomorphism, then show that					
		(p) $o(f(a)) o(a), \forall a \in G$ (q) If G is abelian then G' is also abelian.					
		(p) Let $o(a) = n$ then $a^n = e$					
		Since f is homomorphism $\Rightarrow [f(a)]^n = f(a^n) = f(e) = e'$					
		$\therefore o(f(a)) n \Longrightarrow o(f(a)) o(a), \forall a \in G$					
		(q) Claim : G' is abelian (i.e.) $xy = yx$, $\forall x, y \in G'$					
		Since f is onto $\exists a, b \in G$ such that $f(a) = x$, $f(b) = y$					
		Also G is abelian $\Rightarrow ab = ba$					
		Now $xy = f(a)f(b) = f(ab) = f(ba) = f(b)f(a) = yx \implies G'$ is abelian.					
Q5.	Attemr	t any FOUR questions from the following: (20)					
a)		$d\beta$ are disjoint permutations in S_n . Such that $o(a) = m$, $o(\beta) = n$ then show that order of $(\alpha \ o\beta)$ is					
u)							
	l.c.m[
		$\alpha) = n_1, O(\beta) = n_2$					
		$D(\alpha\beta) = n$ where $n = lcm(n_1, n_2)$					
	Let $O(a$	$(\alpha\beta) = t$					
		$(lphaeta)^t = e$					
		α^t . $\beta^t = e$					
		$\alpha^t = e \text{ or } \beta^t = e \because \alpha \text{ and } \beta \text{ are disjoint}$					
		$n_1 t$ or $n_2 t$					
		$lcm(n_1, n_2) t$					
	n t						
	Consid						
	Colisia	$(\alpha\beta)^n = \alpha^n\beta^n$ (:: α and β are disjoint cycles) = e					
	Der						
		$(\alpha\beta) = t$					
	$\therefore t n$						
		1) and (2)					
	n = t	$c \cdot O(\alpha\beta) = n$ where $n = lcm(n_1, n_2)$ 2					
<i>b</i>)		act composition table for $G = \{\overline{5}, \overline{15}, \overline{25}, \overline{35}\}$ under multiplication of residue classes modulo 40.					
	İ	5 15 25 35					
	5	25 35 5 15					
	15	35 25 15 5					
	25	5 15 25 35					

	35	15	5	35	25				
<i>c</i>)			up of prim		s cyclic.				
	Let G be a cyclic group of order p								
	Let $a \neq e, a \in G$ (Note : Such a choice is always possible)								
	0(a) 0(G)								
	$ \begin{array}{l} O(a) p\\ O(a) = 1 \text{ or } p \end{array} $								
		1	a = e, but e	e was non	identity el	ement			
	If $O(a) =$				identity ei		5		
<i>d</i>)	Let G be a cyclic group of order 44. Find the number of elements of order 4 and the number of elements of order								
	11 in G. Clearly state the result used.								
		G is a cycl	ic group of	f order n g	enerated b	y a then for every divisor d of n there are $\varphi(d)$ elements of			
	order $d 2$	1 6		C 1 4	(4)				
	•		elements o						
<i>e</i>)			f elements cosets of <i>l</i>						
-					, ,	•			
Ans	U(30) =	{1,7,11,	13,17,1	9,23,29	}is a group	under multiplication.			
	Now all distinct left cosets of H in $U(30)$ are,								
	$\overline{1}H = \overline{11}H = \{\overline{1}, \overline{11}\} , \overline{7}H = \overline{17}H = \{\overline{7}, \overline{17}\},$								
	$\overline{13}H = \overline{23}H = \{\overline{13}, \overline{23}\}$, $\overline{19}H = \overline{29}H = \{\overline{19}, \overline{29}\}$								
<i>f</i>)	Show that	$f:GL_2(\mathbb{R})$	$(\mathbb{R}^*, \cdot) \rightarrow (\mathbb{R}^*, \cdot)$) defined	by $f(A) =$	= $detA$ is a group homomorphism. Also find $kerf$. Is f an			
	isomorphi	sm? Justif	y.						
Ans	Now $f(A$	$(B) = \det($	(AB) = de	t(A) det(l	B) = f(A)	$f(B) \Rightarrow f$ is homomorphism			
	kerf = S	$L_2(\mathbb{R})$,	since ker	$f \neq \{e\} =$	⇒ f an not	isomorphism.			
	1				**	***			

