Exam:S Y B A-Semester 4 Mathematics paper 2(Revised) Exam Date :26/04/2019 Q.P Code-66048 Answer Key

[Total Marks: 100]

(3 Hours) **Note:** (*i*) All questions are compulsory. right indicate marks for respective parts.

(*ii*)Figures to the

Q.1	Choose correct alternative in each of the following (20)			
<i>i</i> .	Let j	f and g be functions such that the function f .	g is integ	grable on <i>I</i> , then
	(a)	Both f and g must be integrable on I	(b)	At least one of f and g must be integrable on
	(c)	f and g may or may not be integrable on I	(d)	None of these
	Ans	(c)		
ii.	If <i>f</i> :	$[0,1] \to IR \text{ be defined by } f(x) = \begin{cases} 1 \text{ if } x \in Q \\ 0 \text{ if } x \in IR \end{cases}$) :\Q	
	Then		(e	
	(a)	U(f, P) = 0, L(f, P) = 0		
	(b)	U(f, P) = 1, L(f, P) = 1		
	(c)	U(f, P) = 1, L(f, P) = 0		
	(d)	None of the above.		
	Ans	(a)		
iii.	The r	norm of the partition $P = \{ -7, -5.8, -4.8, -3.8 \}$	3.2, 3 } is	5
	(a)	6.2	(b)	1
	(c)	1.6	(d)	None of the above.
	Ans	(a)		
iv.	Let $f:[a,b] \to \mathbb{R}$ be continuous function and $f(x) > 0$, $\forall x. \text{If } F(x) = \int_0^x f(t) dt$ then		$f F(x) = \int_0^x f(t) dt$ then	
	(a)	$F(x) > 0, \forall x \in [a, b]$	(b)	F(x) is strictly increasing on $[a, b]$
	(c)	F(x) is convex on $[a, b]$	(d)	None of these
	Ans	(b)		
ν.				
	If <i>F</i> : [$[0,1] o \mathbb{R}$ is defined by $F(x) = \int_0^x sin(t^2) dt$,t	hen	
	(a)	$F'(x) = \sin(x^2)$	(b)	$F'(x) = \cos(x^2)$
-	(c)	$F'(x) = \sin x$	(d)	None of these
	Ans	(a)		
vi.	The t	type I integral $\int_0^\infty \frac{1}{x^2+1} dx = \dots$		
	(a)	π	(b)	$\frac{\pi}{2}$
	(c)	$\frac{\pi}{4}$	(d)	None of these
	Ang	4 (b)	1	
	Alls	(0)		

r				
vii.	The expression for finding length of the curve $y = \frac{x^2}{2}$ over [0,1] is given by			
	(a)	$\int_0^1 \sqrt{1+x^2} dx$	(b)	$\int_0^1 \sqrt{1+x} dx$
	(c)	$\int_0^1 \sqrt{1 + \frac{x^2}{4}} dx$	(d)	$\int_0^1 \sqrt{1 + \frac{x^2}{2}} dx$
	Ans	(a)		
viii.	Which of $y =$	h of the following definite integral represents the $x^2 \& x + y = 2$?	ne area of r	egion bounded by the graphs
	(a)	$\int_{-2}^{1} (2 - x - x^2) dx$	(b)	$\int_{-2}^{1} (2+x+x^2) dx$
	(c)	$\int_{-2}^{2} (2 - x^2 - x) dx$	(d)	$\int_{-1}^{1} (2 - x^2 - x) dx$
	Ans	(a) 1		
ix.		$\int_{0}^{1} x^{5}(1) dx^{5}(1)$	$(-x)^3 dx$	=
	(a)	$\frac{1}{2}$	(b)	$\frac{1}{3}$
	(c)	$\frac{1}{4}$	(d)	None of these .
	Ans	(d)		
x.	$\int_0^\infty x^2$	$e^{-x} dx = $		
	(a)	6	(b)	1
	(c)	2	(d)	None of these
	Ans	(c)		
Q2.	Atten	npt any ONE question from the following:		(08)
a)	i.	If $f:[a,b] \to \mathbb{R}$ be a bounded function and <i>a</i> integrable on $[a,b]$ if and only if <i>f</i> is Riem	c < c < b, the set of $c < c < b$, the set of $c < c < b$, the set of $c < c < c < b$, the set of $c < c < c < c < c < c < c$.	then prove that f is Riemann able on $[a, c]$ and $[c, b]$.
	Ans	Let <i>f</i> is Riemann integrable on [<i>a</i> , <i>b</i>] Case 1: $c \in P$ then let P: $a = Xo, X1, X2,$. Divide P into P1 and P2 such that P1 :{ $a = Xo, X1, X2,, Xr = C$ } And P2: { $Xr+1,, Xn=b$ } Then since U(f,P) - L(f, P) < \in <i>implies</i> U (f, P ₁) - L (f, P ₁) < \in and U (f, P ₂) - L (f, P ₂) < \in Case 2: <i>c</i> doesnot \in P then let P' = P Ù { <i>c</i> } in U(f,P ₂) - L(f, P ₂) < \in Implies <i>f</i> is Riemann integrable on [<i>a</i> , <i>c</i>] and Conversely <i>f</i> is Riemann integrable on [<i>a</i> , <i>c</i>] and [<i>c</i> , <i>b</i>]. Then there exist partitions p1 and P2 of [<i>a</i> , <i>c</i>] U (f, P ₂) - L (f, P ₂) < \in And U (f, P) - L (f, P) = U (f, P1) - L(f, P1)+ U (f, P) - L (f, P) < \in (4 marks)	.Xr =C, Xr nplies U(f,1 d [<i>c</i> , <i>b</i>]. (4 n and [c, b] : • U(f,P2) –	+1,Xn=b P ₁) − L(f, P ₁) < \in and marks) such that U (f, P ₁) − L(f, P ₁) < \in and L(f, P2) implies

	ii.	If $f:[a,b] \to \mathbb{R}$ is a monotonic function then prove that f is Riemann integrable on $[a,b]$.
	Ans	Claim: if f is monotonic on [a, b] then f is R integrable. Let P= {x0, x1,, xn] be a partition of [a, b] As f is monotonic there are x_i and x''_{i+1} in $[x_{i-1},x_i]$ such that Mi=f(x_i) and mi=f(x_{i+1}) where $M_i = \sup\{f(x)/x \in [x_{i-1},x_i]\}$ & $m_i = \inf\{f(x)/x \in [x_{i-1},x_i]\}$ -
0.2	Atton	ant any TWO questions from the following: (12)
Q.2	Atten	ipt any Two questions from the following. (12)
<i>b</i>)	i.	If $f:[a,b] \to \mathbb{R}$ be a bounded function and P and Q are any two partitions of [a, b] then prove that $L(P, f) \le U(Q, f)$.
	Ans	Let $P = \{x0, x1, \dots, xn\}$ be a partition of $[a,b]$. Given P is subset of Q Let $y1,y2, \dots, ym$ are extra points which are in Q but not in P. Let $P_1 = P \cup \{y1\}$. let $y1 \in [xj - 1, xj] \dots 2$ marks L $(P, f) - L(P_1, f) = (m_j - m'_j)(y1 - xj - 1) + (m_j - m''_j)(xj - y1) \le 0$ Where $m_j = \inf\{f(x)/x \in [x_{j-1}, x_j]\}$ $m_j = \inf\{f(x)/x \in [x_{j-1}, y1]\}$ $m'_j = \inf\{f(x)/x \in [y1, x_j]\}$ As $m'_j \ge m_j$ and $m''_j \ge m_j \dots 3$ marks Therefore $L(P_1, f) \ge L(P, f)$ Similarly, $L(P_2, f) \ge L(P_1, f)$ L $(P_m, f) \ge L(P_{m-1}, f) \ge L(P_{m-2}, f) \dots \ge L(P, f)$ but $P_m = Q \dots 1$ mark $U(Q, f) > L(Q, f) \ge L(P, f)$
	ii.	If f is Riemann integrable on [a, b] then for any $k \in IR$ prove that $\int_{a}^{b} kf = k \int_{a}^{b} f$
	Ans	Prove that $U(kf,P) - L(kf, P) < \epsilon$
		And U(kf) = L(kf) implies $\int_{a}^{b} kf = k \int_{a}^{b} f$
		J_a^{a} , J_a^{a} , J_a^{a} , OR
		Case1:k>0
		Prove that $U(k f, P) = k U(f, P)$ U(k f) = k U(f)
		Similarly $L(k f) = k L(f)$
		Since f is Riemann integrable on [a, b], $U(f)=L(f)=\int_a^b f$
		$\bigcup(K I) = K \bigcup(I) = L(K I)$

		$\int_{a}^{b} kf = \mathrm{U}(\mathrm{k} \mathrm{f}) = \mathrm{k} \mathrm{U}(\mathrm{f}) = k \int_{a}^{b} f (3\mathrm{M})$
		Case2: $k < 0$ Prove that U(k f, P) =k L(f, P) U(k f) = k L(f) Similarly L(k f)= k U(f)
		Since f is Riemann integrable on [a, b],U(f)=L(f) U(k f)=k U(f)=L(k f) (2M) $\int_{a}^{b} kf = U(k f) = k L(f) = k \int_{a}^{b} f$
		Case3: k=0 (1M) $\int_{a}^{b} kf = 0 = k \int_{a}^{b} f$
	iii.	If $f:[a,b] \to \mathbb{R}$ be a bounded function then prove that $L(f) \le U(f)$.
	Ans	Prove that U (f, P) \leq L (f, P) Implies inf {U (f, P) for all partition P} \leq sup {L (f, P) for all partition P} Hence $L(f) \leq U(f)$
	iv.	If f is Riemann integrable on [a, b] then prove that f^2 is Riemann integrable on [a, b].
	Ans	Since $ f^{2}(x)-f^{2}(y) = f(x)-f(y) f(x)+f(y) \le 2k f(x) - f(y) $ (Since f is bounded) U (P, f^{2})-L(p,f^{2})= $\sum M_{j}(f^{2}) - m_{j}(f^{2})[x_{j} - x_{j-1}] < \in$ Hence f ² is R integrable.
Q3.	Atten	npt any ONE question from the following: (08)
a)	i.	State and prove the Fundamental Theorem of Calculus.
	Ans	Statement: Let $f: [a, b] \to \mathbb{R}$ be R-integrable on $[a, b]$ and $F(x) = \int_a^x f(t)dt$, $\forall x \in [a, b]$. If f is continuon on $[a, b]$ then F is differentiable and $F'(x) = f(x)$. Proof: Let $h > 0$ such that $x + h \in [a, b]$. Then $\frac{F(x+h)-F(x)}{h} = \frac{1}{h} [\int_x^{x+h} f(t) dt]$.since f is continuous on $[x, x + h]$ hence bounded. Let $\sup(f)=M$ and $\inf(f)=m \Rightarrow m \le \frac{1}{h} \int_x^{x+h} f(t) dt \le M \Rightarrow \exists c \in [x, x + h]$ such that $\frac{1}{h} \int_x^{x+h} f(t) dt = f(c(h))$.since $x \le c(h) \le x + h \Rightarrow c(h) = x$ as $h \to 0$.hence the proof.
	ii.	State and prove comparison test for improper integrals of type-I.

	Ans	Statement If $ f(x) \le k q(x) $ for all $x \ge x_0$ then	
		Convergence of $\int_{a}^{\infty} g(x) dx$ implies Convergence of $\int_{a}^{\infty} f(x) dx$ and divergence	
		of $\int_{a}^{\infty} f(x) dx$ implies divergence of $\int_{a}^{\infty} g(x) dx$	(2N
		Proof : Part 1:	
		Given $\int_a^{\infty} g(x) dx$ is Convergent	
		By Cauchy's Criterion for any $\varepsilon > 0$, there exists $x_1 > a$ such that for all	
		$y > x \ge x_1 > a$, $ \int_x^y g(x) dx < \frac{\varepsilon}{k}$	
		Let $x_2 = \max \{ x_0, x_1 \}$	
		For all $y > x \ge x_2$ > a, $ \int_x^y f(x) dx \le \int_x^y k g(x) dx < \varepsilon$	
		By Cauchy's Criterion $\int_a^{\infty} f(x) dx$ is convergent	
		Part 2: Given $\int_{a}^{\infty} f(x) dx$ is divergent. (4M)	
		TPT $\int_{a}^{\infty} g(x) dx$ is divergent.	
		Suppose $\int_{a}^{\infty} g(x) dx$ is convergent.	
		But then by part $\int_{1}^{\infty} f(x) dx$ is convergent , which is not true	
		Hence our assumption is wrong	
		Proved (2M)	
Q3.	Atten	hpt any TWO questions from the following: (12)	
<i>b</i>)	i.	$\left(r^{2}\sin\left(\frac{\pi}{2}\right)\right)$ if $0 < r < 1$	
,		Let $F: [0,1] \to \mathbb{R}$ be defined by $F(x) = \begin{cases} x & \sin(x) & i \neq 0 \\ 0 & i \neq x \\ $	
		Show that F is differentiable over [0, 1] Let $f : [0, 1] \rightarrow \mathbb{R}$ be given by	
		$f(x) = F'(x) \operatorname{find} \int_{-1}^{1} f(t) dt$	
	Ans	$\pi(x) = \left(2x\sin\left(\frac{\pi}{2}\right) - \pi\cos\left(\frac{\pi}{2}\right), x \neq 0 \right) = \left(1 + 1\right) \left(1 + 1\right) = \pi(x)$	
		$F'(x) = \begin{cases} x & (x) \\ 0 & $	
	ii.	Evaluate $\lim_{x \to 0} \frac{1}{t} \int_{-\infty}^{x} \frac{t^2}{dt} dt$	
		$\sum_{x \to \infty} x^6 J_0 + t^6 u^2$	
	Ans	$\mathbf{L} \in \mathbf{F}(x) = \int_{-\infty}^{x} \frac{t^2}{2} \mathbf{G}_{x}^{2} + \mathbf{G}_{x}^{2$	
		Let $F(x) = \int_0^{\infty} \frac{1+t^6}{1+t^6}$. Since $f(t) = \frac{1+t^6}{1+t^6}$ is continuous \therefore by FTC F is differentiable and	
		F'(x) = f(x).	
		$\therefore \lim_{x \to \infty} \frac{1}{x^6} \int_0^x \frac{1}{1+t^6} dt = \lim_{x \to \infty} \frac{1}{x^6} = \lim_{x \to \infty} \frac{1}{6x^5} = does \ not \ exist(by L Hospitals rule)$	
	iii.	State Abel's and Dirichlet's Tests for the conditional convergence of type 1 improper integral and $\int_{-\infty}^{\infty}$	
		discuss convergence of $I = \int_0^\infty \cos x^2 dx$	
	Ans	Abel's Tests:	
		If f is Reimann integrable on $[a, \infty)$ and β is monotonic and bounded on $[a,\infty)$, then function (f β) is	
		Reimann integrable on $[a, \infty)$	
		Dirichlet's Tests:	
		If f is Reimann integrable on [a x), for all $x \ge a$, if $F(x) = \int_{a}^{x} f(x) dx$ and if β is monotonic and	
		if $\lim_{x\to\infty} \beta(x) = 0$ then function (f β) is Reimann integrable on [a, ∞)	

		$I = \int_{0}^{1} \cos x^{2} dx + \int_{1}^{\infty} \cos x^{2} dx = I_{1} + I_{2}$ $I_{1} \text{ proper integral}$ $I_{2} = \int_{1}^{\infty} (2x\cos x^{2}) \frac{1}{2x} dx$ Let $f(x) = 2x\cos x^{2} \beta(x) = \frac{1}{2x}$ Put $x^{2} = t$ $ \int_{1}^{x} (2x\cos x^{2}) dx = -\sin 1 + \sin x^{2} \leq 2$ Since f is conti, f is R-integrable on [1, x] and the integral is bounded. $\lim_{x \to \infty} \beta(x) = 0$ By Dirichlet's Test I is convergent.
	iv.	Prove that $\int_{a}^{b} \frac{1}{(b-x)^{p}} dx$ converges if and only if $p < 1$.
	Ans	Standard proof: $P=1\int_{a}^{b} \frac{1}{(b-x)^{p}} dx = \lim_{x \to b-} \int_{a}^{x} \frac{1}{b-x} dx = \lim_{x \to b-} -\log(b-x) + \log(b-a), \text{ diverges to } \infty$ $p\neq 1 \int_{a}^{b} \frac{1}{(b-x)^{p}} dx = \lim_{x \to b-} \int_{a}^{x} \frac{1}{(b-x)^{p}} dx = \lim_{x \to b-} \frac{(b-x)^{-p+1}}{p-1} - \frac{(b-a)^{-p+1}}{p-1}$ for $p > 1, \dots, dgt$ for $p < 1, \dots, cgt$ and converges to $\frac{(b-a)^{-p+1}}{-p+1}$
Q4.	Attem	npt any ONE question from the following: (08)
a)	i.	State relation between beta and gamma function and hence show that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$
	Ans	$ \begin{array}{c} (2) \cdot (1) \text{Relation bet beta & gamma f}^{n} \\ & \beta(m,n) = \frac{Y(m)Y(n)}{Y(m+n)}, m, n > 0 \\ & tst Y(\frac{1}{2}) = \sqrt{\pi} \\ \end{array} \\ \begin{array}{c} \frac{\beta(\frac{1}{2}, \frac{1}{2}) = \frac{Y(\frac{1}{2})Y(\frac{1}{2})}{Y(\frac{1}{2}+\frac{1}{2})} = \frac{(Y(\frac{1}{2}))^{2}}{Y(\frac{1}{2}+\frac{1}{2})} \\ & \frac{\beta(m,n) = \partial \int (\sin \theta)^{2m-1} (\cos \theta)^{2n-1} d\theta \\ \end{array} \\ \begin{array}{c} \frac{\pi}{Y_{2}} d\theta = \pi \\ \frac{\pi}{2} \left(Y(\frac{1}{2})\right)^{2} = \pi \end{array} \\ \begin{array}{c} \frac{\pi}{2} \left(Y(\frac{1}{2})\right)^{2} = \pi \end{array} \\ \begin{array}{c} \frac{\pi}{2} \left(Y(\frac{1}{2})\right)^{2} = \sqrt{\pi} \end{array} \end{array} $
	ii.	State the disk method for finding volume of solid generated by revolving a continuous curve (i) $y = f(x)$ about X-axis between $x = a \& x = b$ and (ii) $x = g(y)$ about Y-axis between $y = c \& y = d$. Hence find volume of solid generated by revolving the line $y = 5 - x$ about X-axis between $x = 0 \& x = 5$.

	Ans	and but the	
	7 1115	Volume of solid generated by revolving the	
		curve y= fras about x-axis is given by	
		$V = \int_{a}^{b} \pi (frx)^{2} dx$	
		Volume of Solid generated by revolving the	
		cure x=g(y) abt Y-ance is given by	
		Ve ST (guy) dy	
		5 line y= 5-2 Ay= 5-2	
		$V = \int \pi (s-x)^2 dx$	
		$T \left[\left(- x \right)^3 \right]^{\frac{1}{2}}$	
		-3 0 5	
		$= -\pi \left[0 - 5^3 \right] = 135\pi$	
		3 3 3	
Q4.	Atten	t any TWO questions from the following: (12)	
<i>b</i>)	i.	Define beta function and express $\int_0^1 x^{m-1} (1-x^2)^{n-1} dx$ in terms of beta function.	
	Ans	Page	
		@4 (b) (i) Beta f def:	e
		$\int \frac{1}{2} \frac{\chi}{(1-\chi^2)} d\chi$	
		$\frac{\text{sub } 2^2 = t}{2} = 2 \frac{1}{2} $	
		€ (.m-2	_
		$\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{\beta(m-1, n)}{2}$	
	ii.	Show that $\Gamma(n) = 2 \int_{0}^{\infty} x^{2n-1} e^{-x^2} dx.$	

	Ans		
	auch		1 1 1 1
	4.4 (0)	(messections are circular discs with	diameter
		in XY plane	
		". radius of () H= 14-22	
		Asea = Acx) = TTCY-XY	
		(
		Volume = f TT(4-x2) dx = 32TT	
		-2 3	1
Q5.	Attempt any FOUR of	questions from the following: (20)	
a)	If $f:[a,b] \to \mathbb{R}$ be a U(f, P), L(f, P),U(f),	bounded function and P be a partition of [a, b] then define L(f) and give definition of Riemann integration.	
Ans	$U(\mathbf{f}, \mathbf{P}) = \sum_{r=1}^{n} M_r(x_r)$	$-x_{r-1}$	
	$\begin{bmatrix} L(I, P) - \underline{Z}_{r=1} & m_r(x_r) \\ U(f) = Inf\{ U(f, P) / for \end{bmatrix}$	$(-x_{r-1})$ all partitions P of [a, b]}	
	L(f)= sup{ $L(f, P)/fo$ If U(f)= L(f) then f is	r all partitions P of [a, b]} said to be Riemann integrable.	
<i>b</i>)	If $f, g: [a, b] \to \mathbb{R}$ be is Riemann integrab	e Riemann integrable on $[a, b]$, then prove that $f + g : [a, b] \to \mathbb{R}$ le on $[a, b]$	
Ans	Let $P = \{x0, x1,$., xn] be a partition of [a, b]	
	let $M_i = \sup \{(f+g) (f+g) \in M_i = \sup \{f(x) x \in M_i \}$	$ x)/x \in [x_{i-1}, x_i] \} \& m_i = \inf \{ (t+g)(x)/x \in [x_{i-1}, x_i] \} $ $ [x_{i-1}, x_i] \} \& m'_i = \inf \{ f(x)/x \in [x_{i-1}, x_i] \} $	
	let $M''_i = \sup\{g(x)/x\}$	$\in [x_{i-1}, x_i] \} \& m''_i = \inf \{g(x)/x \in [x_{i-1}, x_i] \}$ $M''_i and m_i \ge m'_i m''_i for i = 1, 2, n$	
	Hence U (P, $f+g$) - I	$L(P, f+g) \le U(P, f) - L(P, f) + U(P, g) - L(P, g)(*)$ 3 ma	arks
	But f & g are R- integ Such that $U(P_1, f)$ - L(grable on [a,b] hence there are partitions say P ₁ and P ₂ P ₁ ,f) $\leq \frac{\epsilon}{2}$ and U(P ₂ ,g)-L(P ₂ ,g) $\leq \frac{\epsilon}{2}$ 2 marks	
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	Take $P=P_1 \cup P_2$		
	Then $U(P,f)$ - $L(P,f)$	$E(x) < \frac{\epsilon}{2}$ and $U(P,g) - L(P,g) < \frac{\epsilon}{2}$ 2 marks	
	Hence U (P, $f +g$) - L Therefore $f +g$ is R-in	$(P, f + g) < \epsilon$ by * ntegrable on [a, b]	
<i>c</i>)	If $f:[a, b] \rightarrow \mathbb{R}$ be	a continuous, then show that $\exists c \in (a, b)$ such that	
	$\int_{a}^{b} f(t)dt = f(c)(b)$	-a).	
Ans	Ans: Let $F(x) = \int_a^x f(x) dx$	$f(t)dt, \forall x \in [a, b]$.since f is continuous \therefore by FTC, F is differentiable	e and $F'(x) = f(x)$
	by LMVT $\exists c \in (a, b)$	b) such that $F'(c) = \frac{F(b) - F(a)}{b - a}$	
	$\Rightarrow f(c)(b-a) = \int_a^b$	$f(t)dt - \int_a^{\infty} f(t)dt$ hence proved.	
L	1		

r	
<i>d</i>)	dentify the type and discuss the convergence of each of the following integrals
	$(I) \int_{0}^{1} \frac{dx}{\sqrt{x^{2}+1}} \qquad (II) \int_{1}^{\infty} \frac{\sin^{2} x}{x^{2}} dx$
Ans	(I) $f(x) = \frac{dx}{\sqrt{x^2+1}}$
	Let $g(x) = \frac{1}{x}$
	$\lim_{x\to 0^+} \frac{f}{a} = 1$, finite non zero
	since $\int_0^1 g(x) dx$ is not cgt ,(p=1) by limit comparison Test
	$(II) \frac{\sin^2 x}{x^2} \le \frac{1}{x^2}$ for all x > 1
	since P=2>1, $\int_{1}^{\infty} g(x) dx$ is cgt.
	By First comparison Test $\int_1^\infty f(x) dx$ is cgt.
<i>e</i>)	Find the area of the region bounded by the curves $x = y^2 \& x + 2y^2 = 3$.
Δns	y he we re
	a. 5 (e) Alega degion bold het the cueve x=242
	x = 3 - 34-
	Te food interval a interes? consider
	$y^2 = 3 - 2y^2$ =) $y = \pm 1$
	d = j = j = j
	$A_{1}e_{3} = \int (2-2u^{2}) - M^{2} du$
	$= \int_{-3}^{-3} 34^{2} dy = 4$
<i>f</i>)	Show that $\Gamma(1) = 1$.
