é —
) 5353
2% hours)
Total Marks: 75

N.B.: (1) All questions are compulsory.
(2) Makesuitable assumptions Wherever necessary and state the assumptions made.
(3) Answers to the same question must be written together.
(4) Numbers t0 the right indicate marks.
(5) Draw neat labeled diagrams wherever necessary.

e

(6) Use of Non—programmable calculators is allowed.

1. | Attempt any three of the following:
a. | Whatis Software? Explain the characteristics of Software? '

Ans: |
Software system OT software is: ]
(1) Instructions/Computer programs that when executed provide desired function & |
performance. \
(ii) Data structures that enable the programs 10 adequately manipulate information. \
(iii) Documents that describe the operation and use of the programs.

A software system consists of several separate programs, configuration files, which \
are used to setup these programs, system documentation, which describes the

structure of the system & user documentation which explains how 10 use the system |
& website for users 10 download recent product information. \

Characteristics:

Since, software is a logical system (whereas, hardware is a physical system). its ‘
characteristics are different from hardware: \
1. Software is developed or engineered; it is not manufactured in the classical sense.

2. Software doesn™t “wear out”. |
3. Most of the software continues to be custom built or customizable. I

b. | Explain Software Development Life Cycle (SDLC) with the help of diagram '

Ans:

It is a sequence of activities that leads to the production of a software product. \
Communication: Very first step where user contact the service provider i.€, software
organisation and initiate the request for a desired software product in writing and tries '
{o negotiate the terms. ]
Requirement Gathering: A team of software developer holds discussion with

various stakeholders from problem domain and bring out as much as information as |
possible on the requirements. |
Feasibility Study: After requirement gathering, W ith the help of many algorithms, \
team analyses if a software can be designed to fulfill all requirements of the user and |
analyse if the product is financially, practically and technologically feasible for the
organization 10 take up- \
System Analysis - A Planning Phase: Developer decide 2 road map of their planand |
try to bring up the best software model suitable for project. \
Software Design:- All knowledge of requirement and analysis aré taken together to |
plan-up design the software product. |
Coding: Programming Phase- This step is also known as programming phase. The I
1mp1ementation of software design starts in terms of writing program code in the HI
suitable programming language and developing error-free executable programming I,
efficiently. '
Testing: Software testing is done while coding, by the tester that is developing team Hl
members.

15



Integration: Software 18 integrated with libraries, databas
Implementation: We install software on user machine. Software is tested for
portability, adaptability integration.

Qperation And Maintenance: This phase confirms the software operations In terms
of more efficiency and less errors. [f required, the user are trained on. arc aided with
the documentation on how to operate the software and how 10 keep the software
operational

es and other programs. \

Define Software Engineering and its layer with the help of diagram.

Ans:

Software Engineering (SE) is the establishment & use of sound engineering
principles t© obtain economic, reliable and efficient software. Software Engineering
is the application of a systematic, disciplined, quantifiable approach 10 the
development, operation & maintenance of software. Software Engineering is layered
technology as shown in Figure 1.6.

Fundamental /Foundation for SE

Write a short note on any one:

1. RAD model

Rapid Action Development is an incremental software development process model

that emphasizes an extremely short development cycle. The RAD model isa high-
speed adaptation of the linear sequential model in which rapid development is
achieved by using component-based construction.

If requirements are well understood and project scope is constrained, the RAD model '
enables a development team t0 create a fully functional system within 60-90 days.
Used primarily for information system applications, the RAD approach encom passes

the following phases: :

Business modeling: The information flow among business functions is modeled sO

as to understand the following:

i) The information that drives the business process

ii) The information generated |
iii) The source and destination of the information generated \
iv) The processes that affect this information

Data modeling: The information flow defined, asa part of the business-modeling
phase is refined into a set of data objects that are needed to support the business. The
attributes of each object are identified and the relationships between these objects aré
defined.

Process modeling: The data objects defined in the previous phase are transformed to
achieve the information flow necessary to implement a business function. Processing
descriptions are created for data manipulation.

Application generation: RAD assumes the use of fourth generation techniques . \
Rather than using third generation languages, the RAD process works to reuse
existing programmin g components whenever possible or create reusable components.
In all cases, automated tools are used 0 facilitate construction.

Testing and turnover: Since RAD emphasizes reuse, most of the components have

already been tested. This reduces overall testing time. However, NeW components




must be tested and all interfaces must be fully exercised.

In general, ifa business function can be modularized in a way that enables each

function to be completed in less than three months, itisa candidate for RAD. Each |

major function can be addressed by a separate RAD team and then integrated t0 form |

a whole.

Advantages: _ ']
o Modularized approach 10 development
o Creation and use of reusable components \

o Drastic reduction in development time

Disadvantages: \

o For large projects. sufficient human resources are needed to create the right |
number of RAD teams. \

« Notall types of applications are appropriate for RAD. If a system cannot be
modularized, building the necessary components for RAD will be difficult. \
o Notappropriate when the technical risks are high. For example, when an
application makes heavy use of new technology or when the software requires
a high degree of interoperability with existing programs.

2. TimeBox Model
Timeboxing is an approach 1o task and time management that sets rigid constraints

on how long a given task or project can take to complete. Extensions are not
permitted. The term comes from agile software development, in which a time box 13
defined period during which a task must be accomplished. \
Timeboxing Model

In time boxing model, development is done iteratively as in the iterative enhancement
model. However, in time boxing model, each iteration is done in a timebox of fixed
duration. The functionality to be developed is adjusted to fit the duration of the
timebox. Moreover, each timebox is divided into a sequence of fixed stages where
each stage performs a clearly defined task (analysis. implementation, and deploy) that
can be done independently. This model also requires that the time duration of each
stage 1s approximately equal so that pipelining concept is employed to have the
~eduction in development time and product releases. There is a dedicated team for
each stage so that the work can be done in pipelining. Thus, stages should be chosen
in such a way that each stage perform some logical unit of work that becomes the |
input for next stage. |
In addition to the advantages of iterative model, time boxing model has some other

advantages t0O.

Various advantages and disadvantages associated with timeboxing model are listed in

Table.

Disadvantages

Advantages

Project management becomes MmoOre

complex.

Not suited to projects in which entire
development work cannot be divided
into multiple iterations of almost, equal
duration.

Speeds up the development process and
shortens the detivery time

Well suited to develop projects with a
number of features ‘n short time period.




What are Functional and non-functional requirements of software?

Ans: '|
Functional requirements are the statements of services the system should provide. '
how the system should react to particular inputs and how the system should behave in \
particular situations. Functional requirements are the product capabilities, oF things
that a product must do for its users. Functional requirements define how software \
behaves to meet user needs. ll

Non-Functional Requirements are the constraints on the services of functions offered \
by the system such as timing constraints, constraints on the development process.
standards, etc. Non-Functional Requirements in Software Engineering presents @
systematic approach to ‘building quality into' software systems. \

Explain the three phases in SCRUM for Agile Project Management.
Ans: '

Agile project ma nagement requires a different approach, which is adapted to \
incremental development and the particular strengths of agile methods. |

The Scrum approach is a general agile method but its focus is on managing iterative \
development rather than specific agile practices. \
There are three phases in Scrum.
o The initial phase is an outline planning phase where you establish the |
general objectives for the project and design the software architecture.

e This is followed by a series of sprint cycles. where each cycle developsan |
increment of the system- |

o The project closure phase wraps up the project. completes required
documentation such as system help frames and user manuals and assesses the \
lessons learned from the project. I

|

— N . *\
”~ Lgorss | Seheat SIS s \
{ . ' / ‘~.
[ Qutisne -’:‘..:.‘".': - - { \ |
a0k arctes tural \,,r—- —_— »—*«5"" — sroneit Closure | |
desm il I )
- _—  Resiew | Dawetop gl

5 \

Sprnt cycle

The Sprint cycle
e Sprints are fixed length. normally 2—4 weeks. They correspond to the
development of 2 release of the system in XP.
o The starting point for planning is the product backlog, which is the list of |
work to be done on the project. |
o The selection phase involves all of the project team who work with the
customer to select the features and functionality to be developed during the ]
sprint. |
<4 Once these are agreed, the team organize ihemselves to develop the software. \
During this stage the team 1S isolated from the customer and the organization,
with all communications channelled through the so-called “Scrum master’.
& The role of the Scrum master is t0 protect the development team from
external distractions. |
& At the end of the sprint, the work done is reviewed and presented to I
stakeholders. The next sprint cycle then begins.




Ans:

construction and operation and
purpose or purposes.

Procwemant |

4 |
i

Equipment and
\ coftware updates
\j

v T

| Dewelopment

System '5_

'\

Deployment I'I valution |

L B

| Opﬁ._\-e:or\

< Procurement (acquisition)

requirements are defined.
distributed and the system
& Development

system 1S implemented
defined.
4 Operation

Explain the Impo
dependability.
Ans:

dependability of the system.
& The dependability of a system

4 Dependability COVErs the related

Importance of dependability
& System failures may have wides
affected by the failure.

rejected by their users.

losses or physical damage.

recovery cost.
Causes of failure
< Hardware failure

components have reached

< Procuring, specifying, designing. implementing, validating,
maintaining socio-technical systems.
& Concerned with the services provided by the system. constraints on its\

[} Y i i \

« The purpose of the system is established, high-level system
= The system is developed — requirements are defined in detail. the

= The system is deployed and put into use. Changes are made as new \
requirements emerge. Eventually, the system is decommissioned. \

rtance of Sytem dependability and the causes of failure in system '
< For many computer—based systems, the most important system property is the
system. It reflects the extent of the user’s confidence that it will operate as

users expect and that it will not ‘fail” in normal use.

and security. These are all inter-dependent.
4 Systems thatare not dependable and are unreliable, unsafe or insecure may be |
& The costs of system failure may be very high if the failure leads t0 economic \

& Undependable systems may cause information loss with a high consequent

« Hardware fails because of design and manufacturing errors of because

deploying and

the ways in which it is used to fulfil its

.

decisions are made on how functionality 1S
components are purchased.

and tested and operational processes are
|

reflects the user’s degree of trust in that
systems attributes of reliability, availability

pread effects with large qumbers of people ||

the end of their natural life.




+ S

oftware failure
« Software fails due to errors in its specification, design Or |
implementation. '
& Operational failure |
« Human operators make mistakes. Now perhaps the largest single cause \

of system failures in socio-technical systems. \

Explain the legacy system in Socio Technical system that continues to provide
essential services. |
Ans: |

o Socio-technical systems that have been developed using old or obsolete
technology.
e Crucial to the operation of a business and t is often too risky 10 discard these
systems \|
o Bank customer accounting system;
o Aircraft maintenance system. \
e Legacy systems constrain new business processes and consume 2 high |
proportion of company budgets. '\

Embeds
knowledge of

Uses

Application
software

Business policies  §
and rules

—_——r]

Application P
data !

e Hardware - may be obsolete mainframe hardware.
o Support software - may rely on support software from suppliers who are ||
no longer in business. |

e Application software - may be written in obsolete programm'mg |
languages.

e Application data - often incomplete and inconsistent.

e Business processes - may be constrained by software structure and \
functionality.

« Business policies and rules - may be implicit and embedded in the system \

software.

Explain the process or the steps of Requirements Engineering Briefly?

Ans: \

It is a four step Process. which includes — |
« Feasibility Study

« Requirement Gathering

« Software Requirement Specification |
- Software Requirement validation |

Feasibility study \
« When the client approaches the organization for getting the desired product \
developed, it comes Up with rough idea about what all functions the software must |
perform and which all features are expected from the software. \

The analysts does 2 detailed study about whether the desired system and its |
functionality are feasible to develop.




< This feasibility study is focu sed towards goal of the organization. This study
analyzes whether the software product can be practically materialized in terms of
implementation, contribution of project to organization, COst constraints and as per
values and objectives of the organization. It explores technical aspects of the project |
and product such as usability. maintainabilitys productivit}r and integration ability.
Requirement Gathering

« If the feasibility report 1S positive towards undertaking the project, next phase starts
with gathering requirements from the user.

. Analysts and engineers comm unicate with the client and end-users to know their
ideas on what the software should provide and which features they want the software
to include. 1
Software Requirement Specification |I
« SRS is a document created by system analyst after the requirements are collected |

from various stakeholders. l\
« SRS defines how the intended software will interact with hardware, external I
interfaces, speed of operation, response time of system, portability of software across
various platforms, maintainability. speed of recovery after crashing, Security, |
Quality,Limitations etc. \

« The requirements received from client are written in natural language- It is the \

responsibility of system analyst (0 document the requirements in technical language
so that they can be com prehended and useful by the software development team. '
Software Requirement Validation
After requirement speciﬂcations are developed, the requirements mentioned in this
document are validated. User might ask for illegal, impractical solution or experts
may interpret the requirements incorrectly. This results in huge increase in cost if not |
nipped in the bud.
Requirements can be checked against following conditions - \
« If they can be practically implemented
« [f they are valid and as per functionality and domain of software |
« If there are any ambiguities \
« If they are complete
« If they can be demonstrated
Explain USE Case diagram with |
Online Shopping : Web Customer actor uses some web site to make purchases ‘l
online. Top levels USE CASE are View Items, Make Purchase and Client |
Register. View ltems use ¢as€ could be used by customer as top level use case if
customer only wants to find and see some products. This use case could also be used
as a part of Make Purchase use case. Client Register use case allows customer 10 |
register on the web site, for example to get some coupons or be invited to private
sales.
Explain briefly
example?
Ans: |
% Organisations that rely on legacy systems must choose a strategy for evolving 'l
these systems I|
= Scrap the system completely and modify business processes SO that it |
is no longer required;
« Continue maintaining the system |
« Transform the system by re-engineering 10 improve  its |
maintainability; \
= Replace the system with a new system. 1
<4 The strategy chosen should depend on the system quality and its business ]
value.

Legacy system categories and its assessment with the help of \

|

An example of a legacy S stem assessment




h busaess valus
e Hipgh busness value

Low quass
_qu_ g High quahty
& '
10 ) L !

S - € 2 ) \

— " J
w S o 7 /
2 S |
3 - |
@ \ Low business vakie Low tausiness value |
g | Low quality - _Hig’h quality |
3 | 3 T e \

5 \ |

Syt quality
Legacy system categories
& Low quality, low business value i
= These systems should be scrapped. \
& Low-quality, high-business value

= These make an important business contribution but are expensive to
maintain. Should be re-engineered Of replaced if a suitable system 1S
available. \
4 High-quality, low-business value ||
« Replace with COTS, scrap completely or maintain. '

& High-quality. high business value
«  Continue in operation using normal system maintenance.

Attempt any three of the following:
Define Architectural design and explain the
Ans:

Architectural Design - The architectural design is the highest abstract version of the |
system. It identifies the software as 2 system with many components interacting with
each other. At this level, the designers get the idea of proposed solution domain.

functions of architectural design?

IEEE defines architectural design as 'the process of defining a collection of hardware
and software components and their interfaces 10 establish the framework for the
development of a computer system.’

An architectural design performs the following functions.

1. It defines an abstraction level at which the designers can specify the functional and
performance behaviour of the system. |
2. ltactsasa guideline for enhancing the system (when ever required) by describing
those features of the system that can be modified easily without affecting the system
integrity.

3. It evaluates all top-level designs. |
4. It develops and documents top-level design for the external and internal interfaces. ||
5. It develops preliminary yersions of user documentation. |
6. It defines and documents preliminary test requirements and the schedule for
software integration. Architectural design is of crucial importance in software
engineering during which the essential requirements like reliability, cost, and
performance are dealt with. Though the architectural design is the responsibility of
developers, some other people like user representatives, systems engineers, hardware
engineers, and operations personnel are also involved. All these stakeholders must
also be consulted while reviewing the architectural design in order to minimize the
risks and errors. |
Explain User Interface design process(UlD)?
Ans: |
User interfaces should be designed 10 match the skills,experience and expectations of
its anticipated users. System users often judge a system by its interface rather than its
functionality. A soorly designed interface can cause a USCT to make catastrophiC |




errors. Poor user interface design is the reason why so many software systems

never used.

arc |

User Interface design 1S an iterative process involving close liaisons between users |
and designers.

The three core activities in this process are: |
- User analysis. Understand what the users will do with the system; |
- System prototyping. Develop a series of prototypes for experiment; |
- Interface evaluation. Experiment with these prototypes with users.
Explain Software Project Management briefly?
Software project management is the mean by which an orderly control process can be |
imposed on the software development process to ensure software quality along with \
the monitoring of the process and then controlling the wrong activities. Software |
project management is a crucial difficult task in case where |
(i) software execution is late (if) over budget (iii) software fails to meet the user |
requirements. |

The basic project management process activities: |
1- Proposal Writing ||
2- Project Planning and Scheduling |
3. Project Costing '
4- Project monitoring and reviews |
5. Personal Selection and Evaluation ‘
6- Report Writing and Presentations |
7- Quality Management |
8- Configuration Management

1-Proposal Writing: |
It includes:

- Description of main objectives of the project |
- How the objectives will be carried out and fulfilled |
_ Cost &amp; schedule estimates \
2- Project Planning and Scheduling: Planning includes: |
- Identification of activities ‘
- Milestones (reports .manual) for the management |
- Deliverables for the customer |
Project scheduling includes: |
- Division of project into separate activities ||
- Time Judgment for completion of each Activity |
3- Project Costing : |
It Includes: |
_ Estimation of the total cost of the projects |

4- Project Monitoring and Reviews : \
Monitoring is a continuing activity and includes: |
- The progress of the project is compared regularly with the planned time schedule |
&amp; costing (could be done with daily informal discussions or formal meetings
Review includes:

- The review of overall progress of the technical development of the project is done |
regularly. |
5- Personal Selection Evaluation : \
It includes:

- Selection of skilled and experienced staff for the project ‘
- Regular evaluation of the performance of staff.




- Inexperienced staff may be trained.

6- Report writing Presentation : \
- Report of project 1S briefly documented 1O present pefore the client &amp;
contractor. \
7- Quality Management l
It includes: l,
- Quality Assurance |
- Quality planning \|
- Quality control \
8- Configuration Management l
Configuration is a set of activities designed to control change by identifying the work |
products that are likely 10 change. establishing relationships among them. defining \
mechanisms for managing different version of these products, controlling &amp: the |
changes imposed auditing &amp; reporting on the changes made. \
It includes: '
- Identification of the work products. l'
- Managing the products and controlling, auditing, reporting the changes. \

o

Briefly explain the Risk identification and the types of risk in the
Management?
Ans:
Risk identification is a systematic attempt to specify threats to the project plan. By |
identifying known and predictable risks, the project manager takes 2 first step |
towards avoiding them when possible and controlling them when necessary. There |
are two distinct types of risks: |
i) Generic risks: These are @ potential threat to every software project. \
i) product-specific risks: These can be identified only by aclear understanding of |
the |
technology, the people and the environment that are specific t0 the project at hand. |
One method to identify risks is t© create a risk item checklist. The checklist can be |
used for risk . dentification and focuses on some subset of known and predictable \
risks in the following general categories: l,
1 Product size: Risks associated with the overall size of the software to be built or ]
modified. |
717/ Business impact: Risks associated with constraints imposed by the management \
or the
market.
Customer characteristics: Risks associated with the sophistication of the

customer and the
developers ability to communicate with the customer in a timely manner. |

(1Process definition: Risks associated with the degree to which the software ]
process has |
been defined. '|
~ Development environment: Risks associated with the availability and the '|
quality of the 'I
tools used to build the product. 'l
7 Technology: Risks associated with the complexity of the system 10 be built and \
the
newness of the technology that is packaged by the system. \
- 1Staff size and experience: Risks associated with the overall technical and project |
experience of the software engineers who will do the work. |
The risk item checklist can be organized in different ways. Questions relevant to each \
of the topics can be answered for each software project. The answers to these
questions allow the planner t0 estimate the impact of risk. A different risk item I
checklist format simply lists characteristics that are relevant to each general I
subcategory. Finally. a set of risk components and drivers are listed along with their

process of Risk |




probability of occurrence.

Risk components are defined in the following manner:
1 OPerformance risk - The degree of uncertainty that the product will meet its !
requirement
and be fit for its intended use. |
~ 1 Cost risk - The degree of uncertainty that the project budget will be maintained '|
" Support risk - The degree of uncertainty that the resultant software will be easy |
o correct, |
adapt and enhance. |
171Schedule risk - The degree of uncertainty that the project schedule will be \
maintained and |
the product will be delivered on time. |
Explain the functions of Quality Assurance and its Standards?
Ans: |
Quality assurance is establishing organizational procedures and standards for quality. \
Software Quality Assurance (SQA) Activities:

« Prepares an SQA plan for a project

. Participates in the development of the project and software process description ‘
. Reviews software engineering activities to verify compliance with the defined |
software process '
. Audits designated software work products 1o verify compliance with those defined I|
as part of the software process |
« Ensures that deviations in software work and work products are documented and
handled according to 2 documented procedure '|
« Records any noncompliance and reports to senior management '
. Coordinates the control and management of change l
« Helps to collect and analyze software metrics l

Standards: |
- Standards are the key to effective quality management
- They may be international, national, organizational or project standards

- Product standards define characteristics that all components should exhibit €.g. & |
comimon programming style |
- Process standards define how the software process should be enacted Importance of ||
standards.

- Encapsulation of best practice- avoids repetition of past mistakes
- Framework for quality assurance process - it involves checking standard\
compliance |

- Provide continuity - new staff can understand the organisation by understand the ||
standards applied ||
Certification Standards:

1.1S0 9000
2.1S0 9001
Describe why it i
Ans:

Software measurement: ||
Software measurement is concerned with deriving a numeric value for an attribute of |
a software product or process. This allows for objective comparisons between
techniques and processes \
Metrics:

- Any type of measurement which relates to a software system, process or related ‘

s important to measure the software metrics?

documentation

- Allow the software and the software process to be quantified |
- Measures of the software process or product |
- May be used to predict product attributes or to control the software process |
Use of measurements




& To assign a value to system quality attributes
= By measuring the characteristics of system components, such as their

cyclomatic complexity, and then aggregating these measurements, you

|

can assess system quality attributes. such as maintainability. ||

4 To identify the system com ponents whose quality is sub-standard |

Measurements can identify individual components with characteristics that \
deviate from the norm. For example, you can measure components to

discover those with the highest complexity. These are most likely to contain \

b’)_

bugs because the complexity makes them harder t0 understand

Attempt any three of the following:
Explain System testing Process.
Ans:

System Testing is the assurance of proper working or execution of the developed
system from user’'s perspective using formal procedure. \
System Testing Process can be defined in the following steps:

a. Function Testing: the system must perform functions specified in the

requirements.

b. Performance Testing: the system must satisfy security, precision, load and speed
constrains specified in the requirements.

c. Acceptance Testing: customers try the system to make sure that the system built is |
the system they had requested. '|
d. Installation Testing: the software is deployed and tested in the production |
environment.

functional software requirements environment
requirements requirements specification

System Other Customer User i
-

Integrated
—

modules

Functioning Verified, Accepted
system validated system
coftware

System testing:-

System testing of software or hardware is testing conducted on a complete, integrated
system to evaluate the system's compliance with its specified requirements. System
testing falls within the scope of black box testing, and as such. should require no
knowledge of the inner design of the code or logic. |

Explai (V&YV) Process?

Ans:
Verification and Validation Verification is a process of evaluating the intermediary

work products of a software development lifecycle to check if we are in the right

track of creating the final product. Validation is the process of evaluating the final

product to check whether the software meets the business needs. |
Verification Validation Evaluates the intermediary products to check whether it
meets the specific requirements of the phase. Evaluates the final product t0 check
whether it meets the business needs. Checks whether the product is built as per the
specified requirement and design specification. It determines whether the software 18
fit for use and satisfies the business need. Checks —Are W€ building the product

n briefly Verification and Validation




rightl? Checks —Are we building the right producti? This is done without executing
the software Is done with executing the software Involves all the static testing
techniques Includes all the dynamic testing techniques.

The objectives of Verification and Validation activities are as follows: |
« Facilitates early detection and correction of errors. |
« Encourages and enhances the management intervention and inside into process and
product risks.

compliance with schedule and budget requirements.

e Provide supportive measures towards the software lifecycle process, to enhance
1

List and describe the static Analysis check points Tavolved in Automated Static |
Analysis?
Ans: ||
Automated static analysis involves the static analyzers. Static analyzers are software |
tools for source text processing. They parse the program text and try to discover |
potentially erroneous conditions and bring these to the attention of the Verification |
and Validation team. They are very effective and helpful for inspections. ‘
Static testing is a form of software testing where the software isn't used. This |
contrasts with dynamic testing. It is generally not detailed testing, but checks mainly
for the sanity of the code, algorithm, or document. It is primarily syntax checking of
the code and/or manually reviewing the code or document to find errors. This type of |
testing can be used by the developer who wrote the code, in isolation. Code reviews, |
inspections and walkthroughs are also used.
From the black box testing point of view, static testing involves reviewing \
requirements and specifications. This is done with an eye toward completeness or
appropriateness for the task at hand. This is the verification portion of Verification
and Validation. \
Even static testing can be automated. A static testing test suite consists of programs |
to be analyzed by an interpreter ora compiler that asserts the programs syntactic |
validity.

|

Write a short note on Size oriented Metrics of Software Measurement and Find the
effort for the project, assume that 310 FP are estimated in total, and average |
productivity based on past projects is 5.5 FP/person-month. |
Ans:
Size-oriented measures are computed by normalizing direct measures of the software
engineering process (e.g. effort or defects) over the product size, measured in lines of
code. Size-oriented metrics are relatively easy to collect, but can present problems
when component-based or visual programming methods are applied. '
Size-oriented Metrics
Attempt to quantify software projects by using the size of the project to normalize
other quality measures

Possible data to collect:

number of lines of code

number of person-months to complete

cost of the project

number of pages of documentation

number of errors corrected before release

number of bugs found post release

Assume that 310 FP are estimated in total, and average productivity based on past
projects is 5.5 FP/person-month, then the effort for the project is:
Effort =310/5=56 person-months

Explain any one type of metrics to_estimate the Software productivity?




e Function Points
e Object Point

Function points :

- Function Points measure software size by quantifying the functionality

provided to the user based solely on logical design and functional |

specifications
- Function point analysis is a method of quantifying the size and complexity

of a software system in terms of the functions that the system delivers to |

the user
- It is independent of the computer language, development methodology,
technology or capability of the project team used to develop the
application
Working from the project design specifications, the following system functions are
measured (counted):
- Inputs
- Outputs
- Files
- Inquires
- Interfaces
Steps involved:
Determine Type of Count (3 Types)
« Enhancement (Project) Function Point Count
- Application Function Point Count * Development (Project) Function Point Count
« Identify Counting Scope and Application Boundary
» Count Data Functions
« Count Transactional Functions
« Determine Unadjusted Function Point Count
« Determine Value Adjustment Factor
« Calculate Adjusted Function Point Count

Object points:
- Object points are an alternative function-related measure to function points

when 4Gls or similar languages are used for development
- Object points are NOT the same as object classes
- The number of object points in a program is a weighted estimate of
«  The number of separate screens that are displayed
« The number of reports that are produced by the system
«  The number of 3GL modules that must be developed to supplement
the 4GL code
- Object points are easier to estimate from a specification than function points
as they are simply concerned with screens, reports and 3GL modules
- They can therefore be estimated at an early point in the development process.
At this stage, it is very difficult to estimate the number of lines of code in a
system

Calculate Cyclomatic complexity using the control flow diagram for the given
example:

IF A=10 THEN

IF B> C THEN

A=B

ELSE

A=C

ENDIF




ENDIF
Print A
Print B
Print C
Ans:

PRINTA 8,C

The Cyclomatic complexity is calculated using the above control flow diagram that
shows seven nodes(shapes) and eight edges (lines), hence the cyclomatic complexity
is8-7+2=3

Attempt any three of the following:

15

Explain process and product quality.

Ans:

Understanding, Modelling and Improving the Software Process is process
improvement.

- Process quality and product quality are closely related

- A good process is usually required to produce a good product

- For manufactured goods, process is the principal quality determinant

- For design-based activity, other factors are also'involved especially the capabilities
of the designers

Principal product quality factors are as shown in fig

Development
technology

Prwcess Product : People
quality queality |l quality

Cost, time and
schedule

- For large projects with average capabilities, the development process
determines product quality

- For small projects, the capabilities of the developers is the main determinant

- The development technology is particularly significant for small projects

- In all cases, if an unrealistic schedule is imposed then product quality will
suffer

Explain the different levels of CMMI (Capability Maturity Model introduced)
Framework?




(1¢)

Ans
The CMMI framework is the current stage of work on process assessment and
improvement that started at the Software Engineering Institute(SEI) in the 1980s.

< Initial

= Essentially uncontrolled
< Repeatable
= Product management procedures defined and used
< Defined
= Process management procedures and strategies defined
and used

Managed

= Quality management strategies defined and used
Optimising

= Process improvement strategies defined and used
Intended as a means to assess the extent to which an organisation’s processes
follow best practice.
By providing a means for assessment, it is possible to identify areas of
weakness for process improvement.
There have been various process assessment and improvement models but the
SEI work has been most influential.

YR

Explain briefly WSDL (Web Service Description Language).
Ans:
<4 The service interface is defined in a service description expressed in WSDL
(Web Service Description Language).
<> The WSDL specification defines
»  What operations the service supports and the format of the messages
that are sent and received by the service
= How the service is accessed - that is, the binding maps the abstract
interface onto a concrete set of protocols
»  Where the service is located. This is usually expressed as a URI
(Universal Resource Identifier)

WSDH sennte dedinetipn
i = XML namespace declazatans

Typ= declatatons
= Intevface declaratons
1Aessage declarations

Coniciale Binding di<laratons
L= g E T Endqxoint declaratans

4 The ‘what’ part of a WSDL document, called an interface, specifies what
operations the service supports, and defines the format of the messages that
are sent and received by the service.

< The ‘how’ part of a WSDL document, called a binding, maps the abstract
interface to a concrete set of protocols. The binding specifies the technical
details of how to communicate with a Web service.

< The ‘where’ part of a WSDL document describes the location of a specific
Web service implementation (its endpoint).

What are the benefit and problem of reusing Software?

< In most engineering disciplines, systems are designed by composing existing
components that have been used in other systems.

< Software engineering has been more focused on original development but it is
now recognised that to achieve better software, more quickly and at lower




cost, we need a design process that is based on systematic software reuse.
<4 There has been a major switch to reuse-based development over the past 10

years.
Benefits of software reuse

Increased dependability

Reduced process risk

Effective use of
specialists

Standards compliance

Accelerated development

Problems with reuse

Increased maintenance
costs

Lack of tool support

Reused software, which has been tried and tested in
working systems, should be more dependable than
new software. Its design and implementation faults
should have been found and fixed.

The cost of existing software is already known,
whereas the costs of development are always a
matter of judgment. This is an important factor for
project management because it reduces the margin
of error in project cost estimation. This is
particularly true when relatively large software
components such as subsystems are reused.

Instead of doing the same work over and over again,
application specialists can develop reusable
software that encapsulates their knowledge.

Some standards, such as user interface standards,
can be implemented as a set of reusable
components. For example, if menus in a user
interface are implemented using reusable
components, all applications present the same menu
formats to users. The use of standard user interfaces
improves dependability because users make fewer
mistakes when presented with a familiar interface.

Bringing a system to market as early as possible is
often more important than overall development
costs. Reusing software can speed up system
production because both development and
validation time may be reduced.

If the source code of a reused software system or
component is not available then maintenance costs may
be higher because the reused elements of the system
may become increasingly incompatible with system
changes.

Some software tools do not support development with
reuse. It may be difficult or impossible to integrate these
tools with a component library system. The software
process assumed by these tools may not take reuse into

AnnATNn + Thic ie nartinnlawli tenn far tanle that cisnnaet




S

embedded systems engineering, less so for object-
oriented development tools.

Not-invented-here Some software engineers prefer to rewrite components

syndrome because they believe they can improve on them. This is
partly to do with trust and partly to do with the fact that
writing original software is seen as more challenging
than reusing other people’s software.

Creating, maintaining, ~ Populating a reusable component library and ensuring

and using a component  the software developers can use this library can be

library expensive. Development processes have to be adapted to
ensure that the library is used.

Finding, understanding, Software components have to be discovered in a library,

and adapting reusable understood and, sometimes, adapted to work in a new

components environment. Engineers must be reasonably confident of
finding a component in the library before they include a
component search as part of their normal development
process.

Briefly describe the concept of SOA (Service Oriented Architecture) and the benefits
of SOA?

< A means of developing distributed systems where the components are stand-
alone services

< Services may execute on different computers from different service providers

< Standard protocols have been developed to support service communication
and information exchange

find ~~ . Publish
= 4 s
Serice ) T Senie -_t, g
cquesior "L oremdor P
; & Bind (SGAP g
— PO " avsoL)

Benefits of SOA

< Services can be provided locally or outsourced to external providers

< Services are language-independent

< Investment in legacy systems can be preserved

< Inter-organisational computing is facilitated through simplified information
exchange

Write a short note on SaaS(Software as a service)?

< Software as a service (SaaS) involves hosting the software remotely and
providing access to it over the Internet.

* Software is deployed on a server (or more commonly a number of
servers) and is accessed through a web browser. It is not deployed on a
local PC.

= The software is owned and managed by a software provider, rather
than the organizations using the software.

= Users may pay for the software according to the amount of use they
make of it or through an annual or monthly subscription.




Benefits of SaaS
Save time
Save money

Cost effective
scalable




