\bigcirc

P.P. rode (-53211

Semester III

(2½ Hours)

[Total Marks: 75]

- N.B. 1) All questions are compulsory.
 - 2) Figures to the right indicate marks.
 - 3) Illustrations, in-depth answers and diagrams will be appreciated.
 - 4) Mixing of sub-questions is not allowed.

Q. 1	Attempt All (Each of 5Marks)	(15M)
(a)	Select correct answer from the following:	 `
	1. (b)	1
	2. (b)	1
	3. (b)	1
	4. (b)	1
	5. (a)	1
(b)	Fill in the blanks	
	1. Coefficients	
	2.one	1
	3. degree	1
	4. Chromatic	1
	5. equal	1
	<u>l</u>	1
(c)	Short Answers	<u> </u>
	1. If P(n) be a statement and it is true for n=1, n=m-1 and n=m-2 then it is	1
	true for n=m.	1
	If x and y are variables and n is a positive integer, then]]
	$(x+y) = {n \choose 0} x^0 y^n + {n \choose 1} x^1 y^{n-1} + {n \choose 2} x^2 y^{n-2} + \dots + {n \choose n} x^n y^0$	
	2. A complete graph with each vertex is having same degree.	1
	3. A tree with its nodes labelled is called labelled tree	1
	 graph is said to be planar if it can be drawn in a plane such that no edges in G intersect each other except possibly a vertex. 	
	 If N=(V, E) is a transport network, a function f from E to the nonnegative integers is called a flow for N if if f(e) ≤ c(e) 	1
Q. 2	Attempt the following (Any THREE)	(15 A)
(a)	Two letters followed by four digits	(15M)
\a)	26 ² ×10 ⁴	2.5
	•	
	First two digits followed by 4 letters 10 ² x26 ⁴	
	10-220-	2.5

/		
	By sum rule 262x104 +102x264	
	=5,24,57,600	
		1
(b)	Determine the coefficient on $x^2y^3z^2$ in the expansion of $(x + y + z)^7$.	
]	1. Formula $\binom{n}{n_1, n_2, n_3, \dots, n_t}$	
	· · · · · · · · · · · · · · · · · · ·	2
	$\left(\begin{array}{cc} 2 & \left(\begin{array}{c} 7 \\ 2 & 3 \end{array}\right) \end{array}\right)$	1
	3. 71 2!3!2!	1
		i
	Ans210	
(a)		1
(c)	1) True for P(1) (proof)	1
	2) Assumption $n=k$ is true $1^{2} + 2^{2} + 3^{2} + \dots + k^{2} = k(k+1)(2k+1)/6$	-
	3) For n = k+1	1
	$1^{2} + 2^{2} + 3^{2} + \dots + k^{2} + (k+1)^{2} = 1 = (k+1)(k+2)(2k+3)/6$	*
	LH.S = $1 = (k+1)(k+2)(2k+3)/6$	1
	$1^2 + 2^2 + 3^2 + \dots + k^2 + (k+1)^2$	
	$=k(k+1)(2k+1)/6 + (k+1)^2 = (k+1)/(k+2)/(2k+3)/6$ p μ c	3
(d)	Formula: $C(n + r - 1, r) = \frac{(n + r - 1)!}{r!(n-1)!}$	1
	Calculation :C ($65 + 5 - 1$, 5) = c($69,5$)= $69!/5! \times 64!$	2
ĺ	1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 XP4!	2
		1
(e)	The word Sudoku is an abbreviation of aphrase which means that "the digit	
	must occur only once".	5
J	Method: select the row or column which has less number of empty boxes.	
	Use elimination method or solve by breaking the grid in squares or	
- 1	rectangles of equal number of boxes.	
	Benefits: Logical thinking, Analysis, Cognitive Assessment etc	1
	o Managora, Cognitive Assessment etc	
ĺ	(with explanation)	
f)	Binomial Theorem	
	·	2
	$(x+y)^{n} = \binom{n}{0} x^{0} y^{n} + \binom{n}{1} x^{1} y^{n-1} + \binom{n}{2} x^{2} y^{n-2} + \dots + \binom{n}{n} x^{n} y^{0}$	
	Put $x=1$ and $y=-1$	2
1	L.H.S= R.H.S	1
2.3	Attempt the following (Any THREE)	(15M)
ı) I	Not isomorphic	(20171)
. 		
) 1	o. of faces or region + no. of vertices -No. of edges = 2	
) A	graph G is said to be hipartite if its west in 17	2
		_

/		
	vertex of V2.	
		1
(d)	If m and N are positive integers, then there exists a least integers R(m,n) so that if G is a graph and G has at least R(m,n) vertices the	<u> </u>
		f 2
	subgraph on m vertices or graph contains an independent set of size n. R(m,n)= C(m+n-2, m-1) R(2,4)= 4 and R(3,5)=13	1
		2
(e)	Adjacency matrix	<u> </u>
	Let $G = (V,E)$ is a graph on n vertices, then adjacency matrix of G is the nxn matrix $A(G) = [a_{ij}]_{nxn}$	2
	Where aij = number of edges between v _i and v _j = 1 for self loop	
	A B	3
<u> </u>	<u>- </u>	
,	anound be cover only once	1
	A graph is called Hamiltonian if it contains Hamilton circuit such that is	1
	e ₂	
	Eg: a b	
	e ₁ e ₃	1
	dc	
	e ₄	
	Eulerian path P: a b c d a	I
	Hamilton path: a e ₂ b e ₃ c e ₃ d e ₁ a.	Į.
4	Attempt the following (Any THREE)	···
	(:	15)

	Refer(page 740)Discrete and combinatorial mathematics by Grimaldi	3
<u>(b)</u>	True of the state	2
(b)	Transformation Fixed coloring	2
	All 16 (16) 90° c1, c16 (2)	
	180° c1, c10, c11, c16 (4)	}
	270° c1, c16 (2)	
	Vertical c1, c10, c11, c16 (4)	
	Horizontal c1, c7, c9, c16 (4)	!
	Positive slope diagonal c1, c3, c5, c10, c11, c13, c15, c16 (8)	
	Negative slope diagonal c1, c2, c4, c10, c11, c12,c14, c16 (8)	
	No. of equivalence class= $\frac{\sum Fixed\ Transformation}{No.of\ groups}$	
	No.of groups State Burnside's theorem.	3
	Let S be a set of configurations on which a finite group of permutations acts. The	
	number of equivalence classes into which S is partitioned by the action of G is	
	given by	
	$\frac{1}{ G } \sum_{c \in G} sx $	
	(For detail explanation refer Mitchel T. keller) page No. 271	
c)	First augmented path a-b-c-d	5
c)		5
c)	Second augmented path a-f-b-c-d	5
c)	Second augmented path a-f-b-c-d Third augmented path a-f-b-e-d	5
c)	Second augmented path a-f-b-c-d Third augmented path a-f-b-e-d Fourth augmented path a-f-c-d	5
(c)	Second augmented path a-f-b-c-d Third augmented path a-f-b-e-d	5
c)	Second augmented path a-f-b-c-d Third augmented path a-f-b-e-d Fourth augmented path a-f-c-d Fifth augmented path a-f-e-d Maximum flow=35	5
	Second augmented path a-f-b-c-d Third augmented path a-f-b-e-d Fourth augmented path a-f-c-d Fifth augmented path a-f-e-d Maximum flow=35 Ans:15Diagram for cuts required with calculation Refer(page 607)Discrete and combinatorial mathematics by Grimaldi	5
d)	Second augmented path a-f-b-c-d Third augmented path a-f-b-e-d Fourth augmented path a-f-c-d Fifth augmented path a-f-e-d Maximum flow=35 Ans:15Diagram for cuts required with calculation Refer(page 607)Discrete and combinatorial mathematics by Grimaldi	5

	$ \pi_{1}\pi_{2} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 8 & 5 & 7 & 4 & 6 & 2 \end{pmatrix} $ $ Inv(\pi_{1}) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 5 & 1 & 7 & 3 & 6 & 8 & 4 \end{pmatrix} $	1
	$Inv(\pi_1) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 5 & 1 & 7 & 3 & 6 & 8 & 4 \end{pmatrix}$	2
(f)	Refer(page 616)Discrete and combinatorial mathe	ematics by 5
Q. 5	Attempt the following (Any THREE)	
(a)	Formula $\frac{n!}{n_1! \dots n_n!}$ ANS: $\frac{11!}{2!2!2!1!1!}$	2
		3
(b)	Consider a graph G ,a vertex colouring is an assignment of covertices of G such that adjacent vertices have different colour. Gn-colourable if there exist a colouring of G which useses n colouring of G which uses of Colouring of Colouring of G which uses of Colouring of	is said to be
	The minimum number of colour needed to paint G is called the number of G and is denoted by $\aleph(G)$. $\aleph(G) = 3$ Clique=3	ne chromatic 1
c)	(For detail explanation refer Mitchel T. keller)	2
	page No. 248	5
d)		3
	$G = G_1 \cup G_2$ $G = G_1 \cap G_2$	1
)		2.5

.