Examination : SYBSc Semester IV Exam Date : 27th April, 2019

Subject : Mathematics Q.P.Code : 66041

(3 Hours)

[Total Marks: 100]

Note: (*i*) All questions are compulsory.

(*ii*)Figures to the right indicate marks for respective parts.

Q.1	Choose correct alternative in each of the following (20)								
<i>i</i> .	Let a	$a, b \in D_3$, where <i>a</i> and <i>b</i> denote	denotes rotation and reflection then $ ab =$						
	(a)	2	(b)	3					
	(c)	6	(d)	None of the above					
	Ans	(2)							
ii.	Let <i>H</i> and <i>K</i> be the subgroup of a group <i>G</i> . Then $H \cup K$								
	(a) Is always a subgroup of G								
	(b)								
	(c)	Is a subgroup of G if and on	ly if	$H \subseteq K \text{ or } K \subseteq H$					
	(d)	None of the above							
	Ans	(c)							
iii.	The	set \mathbb{Z}_n is forms a group under	the b	• -					
	(a)	·+'	(b)	<u>'_</u> '					
	(c)	· · ·	(d)	None of the above					
	Ans	(a)							
iv.	In the group $(\mathbb{Z}_{18}, +)$, order of $\overline{10}$ is								
	(a)	10	(b)	9					
	(c)	6	(d)	18					
	Ans								
v.	Let H	H is a proper subgroup of \mathbb{Z} up	nder	addition and 12, 14, $18 \in H$ then					
	(a)	$H = 756\mathbb{Z}$	· · /	$H = 2\mathbb{Z}$					
	(c)	$H = 4\mathbb{Z}$	(d)	$H = \mathbb{Z}$					
	Ans								
vi.				order of a in G be infinite then how					
	-	y generators does the group <	: a >						
	(a)	Only one	(b)	Exactly 2					
	(c)	Infinitely many	(d)	none					
	Ans			-					
vii.	If $G =$	$= (\mathbb{Z}, +) \text{ and } H = \{0, \pm 3, \pm 6, \pm 9, \dots \}$	••••• }	then					
	(a)	11 + H = 17 + H	(b)	11 + H = 7 + H					

	(c)	7 + H = 23 + H	(d)	None of these
	Ans	(a) $11 + H = 17 + H$		
viii.	Let C	G be a group of order 8 then G mu	st hav	e an element of order
	(a)	2	(b)	4
	(c)	8	(d)	None of these
	Ans	(a) 2		
ix.	Let ¢	$\phi: \mathbb{C}^* \to \mathbb{C}^*$ given by $\phi(x) = x^4$ b	e a ho	pmomorphism then $ker\phi =$
	(a)	{1,-1}	(b)	$\{1, -1, i, -i\}$
	(c)	$\{i, -i\}$	(d)	None of these
	Ans	(b) $\{1, -1, i, -i\}$		
<i>x</i> .		be an abelian group which has no $= x^2$, then	o elen	then to f order 2 and $\phi: G \to G$ given by
	(a)	ϕ is an automorphism.		
	(b)	ϕ is a group homomorphism whi	ich m	ay not be one –one.
	(c)	ϕ is an automorphism if <i>G</i> is finite	ite.	
	(d)	ϕ is not a group homomorphism	•	
	Ans	(a) ϕ is an automorphism.		
Q2.	Atter	mpt any ONE question from	the fo	ollowing: (08)
a)	i.	Show that $U_n = \{\overline{a} \in \mathbb{Z}_n \mid 1 \le a \le $ operation '•'.	<i>n</i> −1,((a,n)=1, form a group under the binary

Ans			
	We first prove that closure property is satisfied.		
	Let $\overline{a}, \overline{b} \in \mathbb{Z}_n$		
	\Rightarrow (a, n) = 1 and (b, n) = 1		
	\Rightarrow (ab, n) = 1		
	$\Rightarrow \overline{ab} \in \mathbb{Z}_n \Rightarrow \overline{a} \cdot \overline{b} \in \mathbb{Z}_n$ Hence U (n) is closed with respect to multiplication.		2
	Clearly $\overline{a} \cdot (\overline{b} \cdot \overline{c}) = \overline{a} \cdot \overline{bc} = \overline{abc}$		
	and $(\overline{a} \cdot \overline{b}) \cdot \overline{c} = \overline{ab} \cdot \overline{c} = \overline{abc}$		1
	Hence associative property holds in \mathbb{Z}_n with respect to multipl	ication.	
	Further $\overline{1} \in \mathbb{Z}_n$ is such that		
	$\overline{1} \cdot \overline{a} = \overline{a} \cdot \overline{1} = \overline{1a} = \overline{a}$		1
	and this is the identity element in \mathbb{Z}_n .		-
	Let $\overline{a} \in U(n) \Rightarrow (a, n) = 1$		
	$\Rightarrow \exists \text{ integers } b, c \in \mathbb{Z} \text{ such that } ab + nc = 1$		2
	$\Rightarrow ab = 1 - nc = 1 + (-c) n$		2
	$\Rightarrow ab \equiv 1 \pmod{n} \Rightarrow \overline{a} \cdot \overline{b} = \overline{1}$		
	Further $ab + nc = 1 \Rightarrow (b, n) = 1 \Rightarrow \overline{b} \in U(n)$		
	This for $\overline{a} \in U(n)$, $\exists \overline{b} \in U(n)$ such that		
	$\overline{a} \cdot \overline{b} = \overline{b} \cdot \overline{a} = \overline{1} \Rightarrow$ Multiplication inverse exists for every $\overline{a} \in U$	(n) ⇒	
	U (n) is a group with respect to multiplication modulo n.		2
ii.	Define Centre of Group G. Hence or otherwise prove t a subgroup of the group.	hat the	e Centre of any group is
Ans	Clearly ea = ae $\forall a \in G$		
	$\Rightarrow e \in H \Rightarrow H \neq \phi$	1	
	Consider any x, y \in H x \in H \Rightarrow xa = ax \forall a \in G(1)		
	$y \in H \Rightarrow ya = ay \forall a \in G \qquad (1)$ $y \in H \Rightarrow ya = ay \forall a \in G \qquad \cdots (2)$		
	$\Rightarrow y^{-1}(ya)y^{-1} = y^{-1}(ay)y^{-1}$ by (2)		
	\Rightarrow (y ⁻¹ y) (ay) ⁻¹ = (y ⁻¹ a) (yy ⁻¹) associativity of G		
	$\Rightarrow e (ay^{-1}) = (y^{-1}a) e$ $\Rightarrow ay^{-1} = y^{-1}(a) \forall a \in G \qquad \cdots (3)$	3	
	$\Rightarrow ay^{-1} \in H$	3	
	Consider any a ∈ G		
	Consider,		
	$(xy^{-1}) a = x (y^{-1}a)$ associativity = x (ay^{-1}) by (2) and (3)		
	$= (xa) y^{-1} $ associativity		
	$= (ax) y^{-1} \cdots by (1)$		
	$= a (xy^{-1})$ 2		
	Thus, $\forall a \in G$		
	$(xy^{-1}) a = a (xy^{-1})$ $\Rightarrow xy^{-1} \in H$		
	vv-1 e H		
	\Rightarrow H is a subgroup of G 2		

0.0	A		(10)
Q.2	Atter	npt any TWO questions from the following:	(12)
	•		
b)	1.	Let <i>G</i> be a group. Prove that, $(aba^{-1})^n = ab^na^{-1}, \forall a, b \in G \text{ and } \forall n \in \mathbb{Z}$	
	Ans	By induction	
		$ n = 0 (aba^{-1})^0 = e = ab^0 a^{-1} $	2
		Assume for $n > 0$	
		$(aba^{-1})^{n+1} = (aba^{-1})^n . aba^{-1}$ = $ab^n a^{-1} . aba^{-1}$	
		$= ab^{-a} a^{-1} a^{-1}$	2
		For $n < 0, -n > 0$	
		$(aba^{-1})^n (aba^{-1})^{-n} = e$	
		$(aba^{-1})^{n}ab^{-n}a^{-1} = e$ $(aba^{-1})^{n} = ab^{n}a^{-1}$	2
		(ubu) – ub u	
	ii.	Let G be a group and $a \in G$. Show that $H = \{a^{2n} n \in \mathbb{Z}\}$ is a subgroup of G.	
	Ans	Let $x, y \in H := a^{2n}$ and $y = a^{2m}$, for some $n, m \in \mathbb{Z}$	2
		$xy^{-1} = a^{2n}(a^{2m})^{-1} = a^{2n-2m} = a^{2(n-m)}$	2
		$\therefore xy^{-1} \in H$ by 1-step test.	2
	iii.	∴ $xy^{-1} \in H$ by 1-step test. Let <i>G</i> be a group and $a \in G$ with $O(a) = n$ then show that if and only if $a^m = e^{-n m}$.	then
	Ans	(\Rightarrow)	
		O(a) = n T.P.T if $a^m = e$ then $n m$.	
		Let $m = nq + r$, $r = 0$ or $r < n$	
		$e = a^m = a^{nq+r} = a^{nq} \cdot a^r = a^r \implies a^r = e$ If $r < n, a^r = e$ is a contradiction As $O(a) = n$.	
		$\therefore r = 0$	4
		$\therefore n m$	4
		Given $n m \therefore m = nq$ $a^m = a^{nq} = (a^n)^q = e$	2
L	1		1

	iv.	Let $\alpha = (1\ 2\ 5)(6\ 13\ 5)$ and $\beta = (\ 1\ 3\ 4)(2\ 6\ 5)(\ 2\ 3\ 4)$. Write α and β as a proof disjoint cycles. Further, verify the following. p) $O(\alpha) = O(\alpha^{-1})$ q) $O(\alpha\beta) = O(\beta\alpha)$ r) $O(\alpha\beta\alpha^{-1}) = O(\beta)$	duct					
	Ans	$\alpha = (1 \ 3 \)(2 \ 5 \ 6 \), \beta = (1 \ 3 \)(2 \ 4 \ 6 \ 5)$						
		$\alpha^{-1} = (1\ 3)(2\ 6\ 5), \ O(\alpha) = O(\alpha^{-1}) = 6$	2					
		$\alpha\beta = (2 4), \beta\alpha = (4 6), O(\alpha\beta) = O(\beta\alpha) = 2$	2					
		$\alpha\beta\alpha^{-1} = (1\ 3)(2\ 6\ 5\ 4), \qquad O(\alpha\beta\alpha^{-1}) = O(\beta) = 8$	2					
Q3.	Atter	npt any ONE question from the following:	(08)					
a)	i.	Prove that \mathbb{Z}_n the set of residue classes modulo n is a group u addition. Also determine all the generators for \mathbb{Z}_n	ınder					
	Ans	\mathbb{Z}_n is closed under addition	1					
		Addition is associative in \mathbb{Z}_n	1					
		0 is additive identity in \mathbb{Z}_n						
		For any m $\in \mathbb{Z}_n$, - m $\in \mathbb{Z}_n$ is the additive inverse						
		The element $a \in \mathbb{Z}_n$ is a generator of \mathbb{Z}_n whenever gcd of a & n is 1.since by result gcd 1 happens if and only if there exists x, y $\in \mathbb{Z}$ so that $ax+ny=1$. Modulo n this becomes $ax=1$. Now as 1 is a generator of $\in \mathbb{Z}_n$ So is ax modulo n i.e $a \in \mathbb{Z}_n$ is a generator of \mathbb{Z}_n whenever gcd of a & n is 1.	4					
	ii.	Let G be a finite cyclic group of order n then prove that G has a unic subgroup of order d for every divisor d of n.	lue					
	Ans	Let G = (a) be cyclic group of order n. We observe that n is the smallest positive integer such that $a^n = e$, for if m is smallest positive integer with $a^m = e$, then G = { e, a, $a^2,, a^{m-1}$ } and since o(G)=n hence m=n. Let d be a divisor of n, so that n=dd ¹ .Let H= (d ¹), then o(H)=d, as d is the smallest positive integer such that $(a^{d^1})^d = a^{dd^1} = a^n = e$.	4					
		Thus G has a subgroup of H of order d. Suppose H ¹ is another subgroup of order d. Since H ¹ is cyclic, , H ¹ = (a ^k) for some k $\in \mathbb{Z}$ and a ^{kd} =e. By division algorithm k=qd ¹ + r, 0 \le r \le d^1 - 1, then dk=qn +rd and e=a ^{dr} . But dr< n hence r=0 hence a ^k \in H .i.e.	4					

		$H^1 \subseteq H^1$ But as they are of same order hence $H=H^1$.	
Q3.	Atto	npt any TWO questions from the following:	(12)
Q3.	Allei	npt any 1 wo questions from the following.	(12)
<i>b</i>)	i.	Let G=(a) be a finite cyclic group of order 12 then what are all the generators of G. Also determine all the generators of the subgroup $H=(a^3)$.	
	Ans	Generators are a, a^5 , a^7 , a^{11} (a^3) = { a^3 , a^6 , a^9 , e}	3
		Generators of (a^3) are a^3 and a^9 (Using the result G=(b) of order n then the generators of G areb ^m where gcd of m and n is 1.)	3
	ii.	Determine all the subgroups of the cyclic group \mathbb{Z}_{11}^*	
	Ans	$\mathbb{Z}_{11}^{*} = U(11) = \{1,2,3,4,5,6,7,8,9,10\} = (2) = (2^{3}) = (2^{7})$ = (2 ⁹) (2 ²)=(2 ⁴)=(2 ⁶)=(2 ⁸) = {4,5,9,3,1} which is of order 5 (2 ⁵)={10,1} is of order 2 Hence(2),(2 ²),(2 ⁵), (1) are all the four cyclic subgroups of U(11) of orders 10,5,2 and 1 respectively	2 2 2
	iii.	Show that $H = \{ \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} / n \in \mathbb{Z} \}$ is an infinite cyclic subgroup of GL	$f_2(\mathbb{R}).$
	Ans	By first principle of mathematical induction, $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{n} = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$ for positive integers n $\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$ is the inverse of $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ in GL ₂ (ℝ). $\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}^{n} = \begin{bmatrix} 1 & -n \\ 0 & 1 \end{bmatrix}$ for positive integers n. Matrix multiplication is associative. $\begin{bmatrix} 1 & m \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & m+n \\ 0 & 1 \end{bmatrix}$ form, n $\in \mathbb{Z}$ hence closure. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is the identity $\begin{bmatrix} 1 & -n \\ 0 & 1 \end{bmatrix}$ is the inverse of $\begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$ $\therefore \left(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \right)$ is an infinite cyclic subgroup of GL ₂ (ℝ).	1 1 1 1 1

	iv.	Consider the set {4,8,12,16}. Show that this set is a group under multiplication modulo 20 by constructing a Cayley table. What is the identity element? Is the group cyclic?. If so find all its generators.							
	Ans	x 16 4 8 12 16 16 4 8 12 4 4 16 12 8 8 8 12 4 16 12 12 8 16 4 $\{4,8,12,16\}=(8)$ modulo 20 with identity 16 Another generator is 12.i.e. 8 & 12 are the generators of the group H={4,8,12,16} under multiplication mod 20	42						
Q4.	Atter	npt any ONE question from the following:	(08)						
<i>a</i>)	i.	Let <i>H</i> is a subgroup of a group <i>G</i> then $aH = H$ if and only if $a \in H$. Further aH is							
		subgroup of G if and only if $a \in H$.							
	Ans	For $e \in H \Rightarrow ae \in aH = H \Rightarrow a \in H$							
		Conversely,							
		Let $x \in aH \implies x = ah$, $h \in H \implies x = ah \in H$ as $a \in H \implies aH \subseteq H$							
		For $a \in H$ and $e \in H \implies a = ae \in aH \implies H \subseteq aH$. Hence $aH = H$ 4M							
		Further <i>aH</i> is subgroup of $G \Rightarrow e \in aH \Rightarrow e = ah$, $h \in H \Rightarrow eh^{-1} = a$							
		As $e, h^{-1} \in H \implies eh^{-1} = a \in H$							
		Conversely, as $a \in H \implies aH = H$							
		Hence aH is subgroup of G as H is subgroup of G .	4M						
	ii.	Let $f: G \to G'$ is onto group homomorphism. Prove that							
		(p) If H is subgroup of G then $f(H) = \{f(h)/h \in H\}$ is subgroup of G'.							
		(q) If H' is subgroup of G' then $f^{-1}(H') = \{a \in G/f(a) \in H'\}$ is							
		subgroup of G and $kerf \subseteq f^{-1}(H')$.							
	Ans	(p) Since $H \subseteq G$ and $e \in H \Longrightarrow f(H) \subseteq G'$ and $f(e) = e' \in f(H)$							
		<u>Claim</u> : $xy^{-1} \in f(H)$ where $x, y \in f(H)$							
		For $a, b \in H$ such that $x = f(a), y = f(b)$							
		Now $xy^{-1} = f(a)(f(b))^{-1} = f(ab^{-1}) \in f(H)$ as $ab^{-1} \in H$							

		$\therefore f(H)$ is subgroup of G'.	3M
		(q) Since $H' \subseteq G'$ and $f(e) = e' \in H' \Longrightarrow f^{-1}(H') \subseteq G$ and	
		$e \in f^{-1}(H') \implies f^{-1}(H')$ is non–empty subset of G.	
		<u>Claim</u> : $ab^{-1} \in f^{-1}(H')$ where $a, b \in f^{-1}(H')$	
		As $a, b \in f^{-1}(H')$ gives $f(a) = x \in H', f(b) = y \in H' \Longrightarrow xy^{-1} \in H'$	
		Now $f(ab^{-1}) = f(a)(f(b))^{-1} = xy^{-1} \in H' \Longrightarrow ab^{-1} \in f^{-1}(H')$	
		$f^{-1}(H')$ is subgroup of G.	4M
		Let $a \in kerf \implies f(a) = e' \in H' \implies a \in f^{-1}(H') \implies kerf \subseteq f^{-1}(H')$	1M
Q4.	Atter	mpt any TWO questions from the following:	(12)
<i>b</i>)	i.	State Lagrange's theorem for finite group. If H and K are subgroups of G such	that
-		$o(H) = 12$ and $o(K) = 35$ then show that $H \cap K = \{e\}$.	
	Ans	<u>Statement</u> : Let G be a finite group and H is subgroup of G then $o(H) o(G)$.	1M
		Since <i>H</i> and <i>K</i> be two subgroups of $G \Longrightarrow H \cap K$ is also subgroup of <i>G</i> .	
		Further $H \cap K \subseteq H$ and $H \cap K \subseteq K \implies H \cap K$ is also subgroup of H and K .	
		By Lagrange's theorem, $o(H \cap K) o(H)$ and $o(H \cap K) o(K)$	
		$\Rightarrow o(H \cap K) \mid 12 \text{ and } o(H \cap K) \mid 35 \Rightarrow o(H \cap K) \mid \text{gcd}(12, 35)$	
		$\Rightarrow o(H \cap K) \mid 1 \Rightarrow o(H \cap K) = 1 \Rightarrow H \cap K = \{e\}$	5M
	ii.	Let <i>G</i> be a finite group then show that	
		(p) $o(a) o(G)$, $\forall a \in G$ (q) $a^{o(G)} = e$, $\forall a \in G$	
	Ans	Since $a \in G \implies H = \langle a \rangle$ is cyclic subgroup of G. Also $o(H) = o(a)$	
		By Lagrange's theorem $o(H) o(G) \Rightarrow o(a) o(G)$	3M
		Let $o(G) = n$ and $o(a) = m \Longrightarrow a^m = e$, also $o(a) o(G) \Longrightarrow m n$	
		$\Rightarrow n = mk, k \in \mathbb{N}$ Now $a^{o(G)} = a^n = (a^m)^k = e^k = e$	3M
	iii.	Show that $f: G \to G$ given by $f(x) = x^{-1}$ is a automorphism if and only if G	is
		abelian.	
	Ans	(⇒) Consider $f(xy) = (xy)^{-1} = y^{-1}x^{-1} = f(y)f(x) = f(yx)$ as f is	
		homomorphism	
		Since f is injective, $xy = yx \implies G$ is abelian.	2M
		Conversely,	
		Consider, as f is abelian $f(xy) = (xy)^{-1} = x^{-1}y^{-1} = f(x)f(y) \Longrightarrow f$ is	
		homomorphism Let $f(x) = f(y) \implies x^{-1} = y^{-1} \implies (x^{-1})^{-1} = (y^{-1})^{-1} \implies x = y \implies f$ is	
L		Let $f(x) - f(y) \Rightarrow x^{-} = y^{-} \Rightarrow (x^{-})^{-} = (y^{-})^{-} \Rightarrow x = y \Rightarrow f^{-}$ is	

		injective								
		Let $y \in \mathcal{C}$	$G \Rightarrow y^{-1}$	$f^{-1} \in G$,	Now $f($	y^{-1} = $(y^{-1})^{-1} = y \implies f$ is sujective				
		Therefore	e f is au	utomorp	hism.		4M			
	iv.	Show that	at $G = \{$	a + bv	/2 / a, b	$\in \mathbb{Q}$ and $H = \left\{ \begin{pmatrix} a & 2b \\ b & a \end{pmatrix} / a, b \in \mathbb{Q} \right\}$ are				
		isomorph	somorphic groups under addition.							
	Ans	ns Define $f: G \to H$ by $f(a + b\sqrt{2}) = \begin{pmatrix} a & 2b \\ b & a \end{pmatrix}$, $a, b \in \mathbb{Q}$								
		f is well defined and injective. 21								
		f is onto	Э.				1M			
		f is hom	nomorph	ism			1M			
		Therefor	e G is i	somorp	hic to H	<i>'</i> .	1M			
Q5.	Attor	nnt onvi	FUID	quasti	one from	m the following:	(20)			
Q3.	Allel	npt any i	FUUK	questi		in the following.	(20)			
a)		ruct comp of its elem		able of	\mathbb{Z}_5^* unde	er multiplication modulo 5. Also find the order	of			
Ans			-		T]					
	1	1	2 2	3	4					
	2	2	4	1	3					
	3 4	3	1 3	4	2		3			
	4	4	3	2	1					
	O(1)	= 1, 0(2)	= 4.00	(3) = 4	-0(4) =	. 2	2			
<i>b</i>)	Defin	e Abelian	group. I	f (ab)²	$=a^2b^2$	for every a, b in a group G , show that G is Ab	elian.			
Ans	G is a	belian if a	ab = ba,	∀ <i>a</i> , <i>b</i> €	= <i>G</i>		1			
	(<i>ab</i>) ²	$=a^2b^2$								
	abab	= aabb					2			
	bab =	= abb					2			
	ba =	ab ∴ G is	abelian							
<i>c</i>)				f order	: 3 must	be cyclic.				
Ans	-	-			-	roups of order 1 and 3 since order of a	2			
	-	roup divi only elen			•	ip. identity element e.	1			
L	Inco			51401	1 15 110		-			

	If $a \in G$ and $a \neq e$ then $o(a)=3$ as no element of G can have order 2 as 2	1
	does not divide 3.	
	\therefore G=(a) . Hence G is cyclic.	1
<i>d</i>)	Let G be a group and let 'a' be an element of G.	
	(i) If $a^{12} = e$, what can you say about order of a.	
	(ii) Suppose that G is cyclic and $o(G) = 24$. Further if $a^8 \neq e$ and $a^{12} = a^{12}$	≠ e
	then show that $\langle a \rangle = G$.	
		2
Ans	$a^{12} = e \therefore o(a)$ can be 1,2,3,4,6 and 12 which are the divisors of 12.	2
	Now if $o(G) = 24$ and $a \in G$, $a^8 \neq e$, $a^{12} \neq e$. $\therefore a \neq e$, $a^2 \neq e$, $a^4 \neq e$.	2
	But order of a is a divisor of $o(G) \therefore o(a)=24$.	2
	\therefore G=(a) i.e. G is cyclic.	1
<i>e</i>)	Give an example of a group G and a subgroup H of G such that $aH = bH$ but $Ha \neq Ha$	h for
6)		
	some $a, b \in G$.	T
Ans	$G = S_3$, $H = \{e, (12)\}$ then for $a = (13)$ and $b = (123)$	
	$aH = bH = \{(13), (123)\}$ but $Ha = \{(13), (132)\}$ and $Hb = \{(23), (123)\} \Rightarrow$	
	$Ha \neq Hb$	5M
<i>f</i>)	Find the number of group homomorphism from \mathbb{Z}_{12} to \mathbb{Z}_{30} .	
Ans	Let $f: \mathbb{Z}_{12} \to \mathbb{Z}_{30}$ is a group homomorphism.	
	Let $\overline{1} \in \mathbb{Z}_{12}$ then $f(\overline{1})$ defines all homomorphism. Also $o(\overline{1}) = 12$	
	$\overline{1} \in \mathbb{Z}_{12} \text{ and } f(\overline{1}) \in \mathbb{Z}_{30} \Longrightarrow o(f(\overline{1})) \mid o(\mathbb{Z}_{30}) \Longrightarrow o(f(\overline{1})) \mid 30 \dots $	
	As f is homomorphism $\Rightarrow o(f(\overline{1})) o(\overline{1}) \Rightarrow o(f(\overline{1})) 12$ (2)	
	(1) and (2) $\Rightarrow o(f(\overline{1})) gcd(12,30) \Rightarrow o(f(\overline{1})) 6 \Rightarrow o(f(\overline{1})) = 1, 2, 3 \text{ or } 6$	
	Since $f(\overline{1}) \in \mathbb{Z}_{30} \Rightarrow$ there are 6 elements $\{\overline{0}\}, \{\overline{15}\}, \{\overline{10}, \overline{20}\}, \{\overline{5}, \overline{25}\}$ of order	5M
	1, 2, 3, 6 respectively. Hence there are six homomorphism.	511/1
L		
