Examination : SYBSc Semester IV Exam Date : 26th April, 2019.

Subject : Mathematics Q.P.Code : 66040

(3 Hours)

[Total Marks: 100]

Note: (*i*) All questions are compulsory.

(*ii*)Figures to the right indicate marks for respective parts.

Q.1	Choo	ose correct alternative in each of the following (
i.	A gr	oup G is said to be Abelian if	up G is said to be Abelian if				
	(a)	$\forall x, y \in G, xy = yx$	(b)	$\forall x, y \in G, xy \neq yx$			
	(c)	For some $x, y \in G, xy = yx$	(d)	None of the above			
	Ans	(a)					
ii.	The s	et \mathbb{Q} forms a group under the bir	nary o	peration			
	(a)	· + ·	(b)	· _ ·			
	(c)	•	(d)	None of the above			
	Ans	(a)					
iii.	Let I	D_n denote the dihedral group.	Then	$ D_n =$			
	(a)	n	(b)	2n			
	(c)	<i>n!</i>	(d)	None the above			
	Ans	(b)					
iv.	Let <i>I</i>	H be a subgroup of a group G	. ther	1			
	(a)	$\forall x, y \in H, xy^{-1} \in H$	(b)	$\forall x, y \in H, xy^{-1} \in G$			
	(c)	$\forall x, y \in H, xy^{-1} \notin H$	(d)	None of the above			
	Ans	(a)	1				
v.	The	order of 0 in the cyclic group of integers \mathbb{Z} under addition is					
	(a)	0	(b)	Infinite order			
	(c)	1	(d)	None of the above			
	Ans	(c)					

vi.	Let C	G= \mathbb{C}^* be the multiplicative group of non-zero complex numbers and $i \in G$			
	then	o(i) is			
	(a)	1	(b)	2	
	(c)	3	(d)	4	
	Ans	(d)			
vii.	Whie	ch of the following is false?			
	(a)	Any infinite cyclic group	(b)	A subgroup of a cyclic group need not	
		has exactly two generators		be cyclic.	
	(c)	There is only one	(d)		
		subgroup of order d where		The multiplicative group of n^{th} roots	
		d is a divisor of n for a		of unity is cyclic.	
		cyclic group of order n			
	Ans	(b)			
viii.	Let (t $G = (\mathbb{C}^*, \cdot)$ and $H = \{z \in \mathbb{C}^* : z = 1\}$ then the cosets of H in G are			
	(a)	$\{z \in \mathbb{C}^* : z = k\} \forall k$	(b)	$\{z \in \mathbb{C}^* : z \cdot w = 1\} \forall w \in \mathbb{C}^*$	
		$\in \mathbb{R}^+$			
	(c)	$\{z \in \mathbb{C}^* : z+w = 1\} \forall w$	(d)	None of these	
		$\in \mathbb{C}^*$			
	Ans	(a)			
ix.	The	number of group homomorph	ism	from \mathbb{Z}_{12} to \mathbb{Z}_{30} is	
	(a)	6	(b)	7	
	(c)	8	(d)	None of these	
	Ans	(a) 6	I		
<i>x</i> .	Whic	ch of the following groups are	e isoi	norphic	
	(a)	$(\mathbb{Z}_{4,}+)$ and V_4 (Klien-4	(b)	$(\mathbb{Z}_{4,}+)$ and μ_4 (4 ^{<i>th</i>} root of unity)	
		group)			
	(c)	V_4 and μ_4	(d)	None of these	
	Ans	(b) $(\mathbb{Z}_{4,}+)$ and μ_4 (4 th roo	tofu	inity)	

Q2.	Atter	mpt any ONE question from the following:	(08)
<i>a</i>)	i.	Show that \mathbb{Z}_n , the set of residue class of modulo <i>n</i> form a group	under
		the binary operation '+'.	
	Ans		
		First we prove that addition in \mathbb{Z}_n is well defined Suppose $\overline{a} = \overline{c}$ and $\overline{b} = \overline{d}$ $\Rightarrow a = c \pmod{n}$ and $b = d \pmod{n}$ $\Rightarrow a + b = c + d \pmod{n}$ $\Rightarrow a + b = c + d \pmod{n}$ $\Rightarrow a + b = c + d (\mod{n})$ $\Rightarrow \overline{a} + \overline{b} = \overline{c} + \overline{d}$ $\Rightarrow + is well defined in \mathbb{Z}_n.Consider any \overline{a}, \overline{b}, \in \mathbb{Z}_n after modulo nAlso, \overline{a} + (\overline{b} + \overline{c}) = \overline{a} + (\overline{b} + \overline{c}) = \overline{a} + \overline{b} + \overline{c}= (\overline{a + b}) + \overline{c} = (\overline{a} + \overline{b}) + \overline{c}by properties of \mathbb{Z}_n\Rightarrow + is associativeNow, \exists \overline{0} \in \mathbb{Z}_n such that for any \overline{a} \in \mathbb{Z}_n\overline{a} + \overline{0} = \overline{a} + \overline{0} = \overline{a} = \overline{0} + \overline{a}\Rightarrow \overline{0} is additive identity in \mathbb{Z}_nAlso, \forall \overline{a} \in \mathbb{Z}_n, \exists \overline{b} = \overline{n - a} \in \mathbb{Z}_n such that\overline{a} + \overline{b} = \overline{a} + (\overline{n - a})= \overline{a + n - a}= \overline{n} = \overline{0} = \overline{b} + \overline{a}\Rightarrow \overline{b} is additive inverse of \overline{a}\therefore (\mathbb{Z}_n, +) is a group.$	
	ii.	Prove that if for $a \in G$, $O(a) = m$ then $O(a^k) = \frac{m}{g.c.d.(m,k)}$.	

	Ans	Consider $(a^{k})^{m_{1}} = (a^{k_{1}}d)^{m_{1}} = (a^{k_{1}})^{m_{1}}$ $= (a^{k_{1}})^{m_{1}}$ $= (a^{m})^{k_{1}}$ $= e^{k_{1}}$ (as o (a) = m) = e \therefore $(a^{k})^{m_{1}} = e$ and $o (a^{k}) = n$ $\Rightarrow n \mid m_{1}$ (*) Now, $o (a^{k}) = n \Rightarrow (a^{k})^{n} = e$ $\Rightarrow a^{kn} = e$ But $o (a) = m \Rightarrow m \mid kn$ $\Rightarrow m_{1}d \mid k_{1}dn$ by (1) $\Rightarrow m_{1} \mid n$ as $(m_{1},k_{1}) = 1$ (**) Thus, by (*), (**) $m_{1} = n$ $n = m_{1} = \frac{m}{d}$ (by (1)) $= \frac{m}{(m,k)}$ Thus, $n = \frac{m}{(m,k)}$ (i.e.) $o (a^{k}) = \frac{m}{(m,k)}$ (as $o (a^{k}) = n$)	
0.2	Atter	npt any TWO questions from the following:	(12)
<u> </u>	:	Let C be a group. Prove that	()
0)	1.	n) Identity element of G is unique	
		q) The inverse of every element in G is unique.	
	Ang	n) Let there are two identities ρ and ρ'	
	Alls	$xe = ex = e \forall x \in G$	
		$xe' = e'x = e' \forall x \in G$	
		$\therefore e'e = ee' = e$ and $ee' = e'e = e'$	3
		∴e=e	
		q) Let $x \in G$ has two inverses y and y'	
		y = y + e = y + (x + y') = (y + x) + y' = e + y' = y'	3
	ii.	If $a^2 = e$ for every <i>a</i> in a group <i>G</i> then show that <i>G</i> is abelian group	p.
	Ans	$(ab)(ba) = ab^2a = aea = a^2 = e$	2
		But $(ab)(ab) = e$	2
		By uniqueness of inverse $ab = ba$	2
	iii.	Let $G = GL_2(\mathbb{R})$. Let $H = \{A \in G \det A = 2^n, \text{ for some } n \in \mathbb{Z}\}$.Pr	ove
		that H is a subgroup of G .	
	Ans	Let $A, B \in H :: A = 2^n$ and $ B = 2^m$, for some $n, m \in \mathbb{Z}$	2
1	1		1

		$ AB^{-1} = A B ^{-1} = \frac{2^n}{2^m} = 2^{n-m}$	2
		$\therefore AB^{-1} \in H$ by 1-step test.	2
	iv.	Let $\alpha = (1 \ 2 \ 5)(6 \ 13 \ 5)$ and $\beta = (1 \ 3 \ 4)(2 \ 6 \ 5)(2 \ 3 \ 4)$. Write α and as a product of disjoint cycles. Further, verify the following. p) $O(\alpha) = O(\alpha^{-1})$ q) $O(\alpha\beta) = O(\beta\alpha)$ r) $O(\alpha\beta\alpha^{-1}) = O(\beta)$	1β
	Ans	$\alpha = (13)(256), \beta = (13)(2465)$	
		$\alpha^{-1} = (1\ 3)(2\ 6\ 5), \ O(\alpha) = O(\alpha^{-1}) = 6$	2
		$\alpha\beta = (2\ 4\), \beta\alpha = (4\ 6), 0(\alpha\beta) = 0(\beta\alpha) = 2$	2
		$\alpha\beta\alpha^{-1} = (1\ 3)(2\ 6\ 5\ 4), \qquad O(\alpha\beta\alpha^{-1}) = O(\beta) = 8$	2
Q3.	Atter	npt any ONE question from the following:	(08)
<i>a</i>)	i.	Prove that subgroup of a cyclic group is cyclic	
	Ans	Let G =(a) be a cyclic group and H be a subgroup of G. If H ={e} then H is cyclic. On the other hand if H \neq {e} choose $x \in H, x \neq e$. $\therefore x = a^n$ for some $n \neq 0$	2
		Since x and x^{-1} are in H hence some positive power of a belongs to H. Choose the least positive power say m. $(a^m) \subseteq H$ (1)	2
		Now if $b \in H$ then $b=a^{m}$ and we can write $k=qm+r$; $0 \le r < m$ $\therefore a^{r} \in H$ hence $r=0$ i.e. $H \subseteq (a^{m})$ (2)	2
		Hence H = (a) [Hom (1) & (2)]	2
	ii.	Prove that if G be a finite cyclic group of order n then G has $\phi(n)$	
	A 19 G	generators. Let $C_{-}(x)$ be a finite analia group of order x and let $b \in C_{-}$	
	Ans	where $b=a^m$ and suppose b is a generator of G. $\therefore a=b^k \therefore a=(a^m)^k \therefore a^{mk-1}=e$. But n is o(G) hence n divides	2
		$mk - 1$. $\therefore mk - 1 = nt$. i.e. $mk - nt = 1$ \therefore m and n are relatively prime.	2
		Conversely let m and n be relatively prime.	1
		$\therefore \text{ Increasing x and y such that } mx + ny = 1$ $\therefore a^1 = a^{mx+ny} = a^{mx} \cdot a^{ny} = a^{mx}$	1

			1
		$\therefore a \in (a^m) \therefore G \subseteq (a^m), \text{ i.e. } G = (a^m)$	1
		Hence there are $\phi(n)$ generators for G.	1
Q3.	Atter	mpt any TWO questions from the following:	(12)
<i>b</i>)	i.	Show that the group of positive rational numbers under multiplication	on is
		not evelie	
	Ans	Suppose <i>a</i> & <i>b</i> are relatively prime positive integers and that	
		$\binom{a}{2} = \mathbb{O}^+$ Then there is some positive integer k so that $\binom{a}{k}^k = 2$	2
		$\left(\frac{b}{b}\right) = 0$ Then there is some positive integer k so that $\left(\frac{b}{b}\right) = 2$	
		$k \neq 0, 1, -1$	1
		If $k > 1$ then $a^{\kappa} = 2b^{\kappa}$ so that 2 divides a.	1
		Also as $k > 1$ hence 4 divides a and as a consequence 2 divides b	1
		Which contradicts that <i>a</i> & <i>b</i> are relatively prime.	1
		A similar contradiction occurs if $k < -1$	
		Hence $(\frac{a}{b}) = \mathbb{Q}^+$ is not possible . i. e. \mathbb{Q}^+ is not cyclic.	1
	11.	List all the elements of \mathbb{Z}_{40} that have order 10.	
	Ans	4	
		3x4	
		7x4	
		9x4	6
	iii.	Show that an infinite cyclic group has exactly two generators.	
	Ans	Let $G = (a)$ be an infinite cyclic group and let $b \in G$ be another	
		generator of G, so that $G = (b)$. Since $b \in G$, $b=a^m$ and $a=b^n$	
		$\therefore a = a^{mn} i e a^{mn-1} = a^0 = e$	3
		Since all powers of a are distinct in an infinite cyclic group, we	-
		Since an powers of a are distinct in an infinite eyene group, we	3
		have $mn - 1 = 0$. $\therefore m = \pm 1$, showing that $b = a^{-1}$ is the only	
		other generator of G.	
	iv.	Show that if G is a group with more than $p - 1$ elements of ord	der p,
		where p is a prime then G cannot be cyclic.	
	Ans	There are two cases for G :	
		1. G is infinite cyclic 2. G is finite cyclic.	2
		G cannot be infinite cyclic, since an infinite cyclic group has no	-
		two elements of prime order [all powers of the generator element	

		in an infinite cyclic group are distinct]. Now if G is finite cyclic then G can have only one subgroup for	1
		each divisor of its order. A subgroup of order p has exactly $p - 1$ elements of order p. Another element of order p will give rise to another subgroup of	2
		order p. This results in more than one subgroup of order p which is not possible for finite cyclic groups. Combining both the cases G is not cyclic.	1
Q4.	Atter	mpt any ONE question from the following:	(08)
a)	i.	Let <i>H</i> be a subgroup of a group <i>G</i> and $a, b \in G$ then show that	
		(p) $a \in aH$ (q) $aH = bH$ or $aH \cap bH = \emptyset$ (r) $ aH = aH = aH $	bH
	Ans	(p) Since $e \in H \Rightarrow ae \in aH \Rightarrow a \in aH$	1M
		(q) case (i) If $aH \cap bH = \emptyset$ then done	
		Case (ii) If $aH \cap bH \neq \emptyset$	
		Let $x \in aH \cap bH$ then for $h_1, h_2 \in H$	
		$\Rightarrow x = ah_1$ and $x = bh_2 \Rightarrow a = xh_1^{-1}$	
		Let $y \in aH \Longrightarrow y = ah = xh_1^{-1}h = bh_2h_1^{-1}h \in bH \Longrightarrow aH \subseteq bH$	
		Similarly one can show $bH \subseteq aH \Rightarrow aH = bH$	4M
		(r) Define a map $f: aH \to bH$ by $f(ah) = bh$, $h \in H$	
		Show f is bijective map that gives $ aH = bH $	3M
	ii.	Let $f: G \to G'$ is onto group homomorphism. Prove that	
		(p) If <i>H</i> is subgroup of <i>G</i> then $f(H) = \{f(h)/h \in H\}$ is subgroup of	of <i>G'</i> .
		(q) If H' is subgroup of G' then $f^{-1}(H') = \{a \in G/f(a) \in H'\}$ is	S
		subgroup of G and $ker f \subseteq f^{-1}(H')$.	
	Ans	(p) Since $H \subseteq G$ and $e \in H \Longrightarrow f(H) \subseteq G'$ and $f(e) = e' \in$	
		f(H)	
		<u>Claim</u> : $xy^{-1} \in f(H)$ where $x, y \in f(H)$	
		For $a, b \in H$ such that $x = f(a), y = f(b)$	
		Now $xy^{-1} = f(a)(f(b))^{-1} = f(ab^{-1}) \in f(H)$ as $ab^{-1} \in H$	3M

		$\therefore f(H)$ is subgroup of G'.	
		(q) Since $H' \subseteq G'$ and $f(e) = e' \in H' \Longrightarrow f^{-1}(H') \subseteq G$ and	
		$e \in f^{-1}(H') \Longrightarrow f^{-1}(H')$ is non–empty subset of G.	
		<u>Claim</u> : $ab^{-1} \in f^{-1}(H')$ where $a, b \in f^{-1}(H')$	
		As $a, b \in f^{-1}(H')$ gives $f(a) = x \in H', f(b) = y \in H' \Longrightarrow$	
		$xy^{-1} \in H'$	4M
		Now $f(ab^{-1}) = f(a)(f(b))^{-1} = xy^{-1} \in H' \Longrightarrow ab^{-1} \in$	1 M
		$f^{-1}(H')$	
		$f^{-1}(H')$ is subgroup of G.	
		Let $a \in kerf \implies f(a) = e' \in H' \implies a \in f^{-1}(H') \implies kerf \subseteq$	
		$f^{-1}(H')$	
Q4.	Atter	npt any TWO questions from the following:	(12)
<i>b</i>)	i.	Let <i>H</i> and <i>K</i> be two subgroups of <i>G</i> . If $o(H) = p$, a prime integer,	then
		show that either $H \cap K = \{e\}$ or $H \subseteq K$.	
	Ans	Since <i>H</i> and <i>K</i> be two subgroups of $G \Longrightarrow H \cap K$ is also subgroup	
		of G.	
		Further $H \cap K \subseteq H \Longrightarrow H \cap K$ is also subgroup of H .	
		By Lagrange's theorem, $o(H \cap K) o(H) \Rightarrow o(H \cap K) p$	
		$o(H \cap K) = 1 \text{ or } p$	
		If $o(H \cap K) = 1 \Longrightarrow H \cap K = \{e\}$	
		If $o(H \cap K) = p = o(H)$, also $H \cap K \subseteq H$ gives $H \cap K = H$	6M
		Hence $H \subseteq K$.	
	ii.	Let G be a group of order pq where p and q are distinct prime integers.	ers.
		Show that every subgroup $H \neq G$ is a cyclic subgroup of G.	
	Ans	Since H is subgroups of G	
		By Lagrange's theorem, $o(H) o(G) \Rightarrow o(H) pq$	
		As p and q are distinct primes and $H \neq G \Longrightarrow o(H) = 1$ or p	3M

		or q	1M
		If $o(H) = 1 \Longrightarrow H = \{e\} \Longrightarrow H$ is cyclic.	1M
		If $o(H) = p$ and p is prime $\Rightarrow H$ is cyclic.	1 M
		If $o(H) = q$ and q is prime $\Rightarrow H$ is cyclic.	
	iii.	Let <i>G</i> be an abelian group of order <i>n</i> and $(m, n) = 1$, $m \in \mathbb{Z}$ then s	how
		that $f: G \to G$ defined by $f(x) = x^m, \forall x \in G$ is an automorphism	
	Ans	Since $(m, n) = 1 \Longrightarrow mp + nq = 1$ for $p, q \in \mathbb{Z}$	
		Also $o(G) = n \implies x^n = e$, $y^n = e$ for any $x, y \in G$	
		Therefore $x = x^1 = x^{mp+nq} = x^{mp}x^{nq} = x^{mp}$, similarly	
		$y = y^{mp}$	
		As G is abelian, $f(xy) = (xy)^m = x^m y^m = f(x)f(y)$	
		\Rightarrow f is homomorphism	
		Now $f(x) = f(y) \Longrightarrow x^m = y^m \Longrightarrow x^{mp} = y^{mp} \Longrightarrow x = y$	
		\Rightarrow f is injective.	
		Let $y \in G \Longrightarrow y^p \in G \Longrightarrow f(y^p) = y^{pm} = y \Longrightarrow f$ is surjective.	6M
		Therefore $f: G \rightarrow G$ is an automorphism.	
	iv.	Show that the map $f: GL_2(\mathbb{R}) \to GL_2(\mathbb{R})$ defined by $f(A) = (A^t)$	-1
		is an group automorphism.	
	Ans	Consider $f(AB) = [(AB)^t]^{-1} = (B^t A^t)^{-1} = (A^t)^{-1} (B^t)^{-1} =$	
		f(A) f(B)	
		Let $f(A) = f(B) \Longrightarrow (A^t)^{-1} = (B^t)^{-1} \Longrightarrow A^t = B^t \Longrightarrow A = B$	
		Let $B \in GL_2(\mathbb{R})$ then $(B^{-1})^t \in GL_2(\mathbb{R})$ such that $f((B^{-1})^t) =$	6M
		В	
		Therefore f is an automorphism.	
			I
Q5.	Atter	npt any FOUR questions from the following:	(20)
a)	Defi	the Center $Z(G)$ of a group G. Show that $Z(G)$ is a subgroup of G.	
Ans	Z(G)	$0 = \{x \in G xg = gx \forall g \in G\}$	1

	Let $x, y \in Z(G)$ and $g \in G$ xyg = xgy = gxy $\therefore g \in Z(G)$	2
	Let $x \in Z(G)$ and $g \in G$ xg = gx $g = x^{-1}gx$ $gx^{-1} = x^{-1}g$ $\therefore x^{-1} \in Z(G)$ By 2-step test Z(G) is a subgroup of G .	2
b)	Construct composition table of $U(10)$ under multiplication modulo 10. find the order of each of its elements.	Also
Ans	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3
	O(1) = 1, O(3) = 4, O(7) = 4, O(9) = 2	2
<i>c</i>)	How many elements does the group U(10) have? List them. Also find ord each element. Is U(10) cyclic?	ler of
Ans	U(10)= $\{1,3,7,9\}$ o(1)=1, o(3)=o(7)=4, o(9)=2. As there is an element of order 4 which is the order of U(10), hence U(10) is cyclic.	1 3 1
<i>d</i>)	Show that a cyclic group is abelian.	
Ans	Let $G=(a)$. Let $x, y \in G$ be any $\therefore x = a^r$ and $y = a^s$ $\therefore x * y = a^r * a^s = a^{r+s} = a^{s+r}$ [Using + is commutative in integers] $= a^s * a^r = y * x$ \therefore By definition G is abelian.	2 2 1
<i>e</i>)	Give an example of a group G and a subgroup H of G such that $aH = bH$	but

	$Ha \neq Hb$ for some $a, b \in G$.	
Ans	$G = S_3$, $H = \{e, (12)\}$ then for $a = (13)$ and $b = (123)$	
	$aH = bH = \{(13), (123)\}$ but $Ha = \{(13), (132)\}$ and $Hb =$	
	{(23), (123)}	5M
	\Rightarrow Ha \neq Hb	
<i>f</i>)	Show that the map $f: (\mathbb{C}, +) \to (\mathbb{C}, +)$ defined by $f(a + bi) = a - bi$	is an
	group isomorphism.	
Ans	Let $x = a + bi$ then map can be defined as $f(x) = \bar{x}$	
	Now $f(x+y) = \overline{x+y} = \overline{x} + \overline{y} = f(x) + f(y) \Longrightarrow f$ is	
	homomorphism	
	Suppose $f(x) = f(y) \Rightarrow \bar{x} = \bar{y} \Rightarrow \bar{\bar{x}} = \bar{\bar{y}} \Rightarrow x = y \Rightarrow f$ is injective	
	Let $y \in (\mathbb{C}, +) \Rightarrow \overline{y} \in (\mathbb{C}, +) \Rightarrow f(\overline{y}) = \overline{\overline{y}} = y \Rightarrow f$ is surjective.	5M
	Therefore $f: (\mathbb{C}, +) \to (\mathbb{C}, +)$ is an group isomorphism.	
