Exam : S.Y.BSc-Semester 4 Subject: Mathematics Paper 1(Revised) Exam Date: 18-4-2019 Q.P.Code- 66047 <u>ANSWER KEY</u>

(3 Hours)

[Total Marks: 100]

Note: (*i*) All questions are compulsory.

(*ii*)Figures to the right indicate marks for respective parts.

Q.1	Choos	se correct alternative in each of the	follo	wing (20)
<i>i</i> .	If <i>f</i> : [$[a, b] \rightarrow IR$ be bounded function an	d P ,0	Q be partitions of [a,b] then
	(a)	$L(P,f)) \le U(Q,f)$	(b)	$L(P,f) \ge U(Q,f)$
	(c)	L(P,f)) = U(Q,f)	(d)	None of the above
Ans	(a)	$L(P,f)) \leq U(Q,f)$		
ii.	The n	orm of a partition $p = \{0 < \frac{1}{2} < 1\}$	$<\frac{4}{3}<$	$<\frac{7}{3}<3$ is
	(a)	1		
		3		
	(b)	2		
		3		
	(c)	1		
	(d)	None of the above		
Ans	(c)			
iii.	If <i>f</i> : [$[a, b] \rightarrow IR$ is R- integrable then where we have a set of the se	nich o	f the following is true
	(a)	f must be continuous	(b)	f must be differentiable
	(c)	f must be monotonic	(d)	None of the above
Ans	(d)	None of the above		-0
iv.	Let f	$\mathbb{R} \to \mathbb{R}$ be a continuous function.	Then	$\int_{-a}^{a} f(t)dt = 0, \forall a > 0$ if and only if
	(a)	$f \equiv 0$	(b)	<i>f</i> is an odd function
	(c)	$f \neq 0$ For only finitely many	(d)	None of the above.
		real numbers.		
Ans	(b)	f is an odd function		
v.	If f, g	$a: [a, b] \rightarrow \mathbb{R}$ are continuous function	ons su	ich that $\int_{a}^{b} f(x) dx = \int_{a}^{b} g(x) dx$ then
	, · · ·			
	(a)	$f \equiv q \text{ on } [a, b]$	(b)	
				f(x) = g(x) is a constant.
	(c)		(d)	None of the above.
		$\exists c \in [a, b]$ such that $f(c) =$		
		<i>g</i> (<i>c</i>)		
Ans	(a)	$f \equiv g \text{ on } [a, b]$		
vi.	The t	ype 2 integral $\int_0^2 \frac{1}{x-1} dx$		

	(a)	Diverges	(b)	Converge to 0
	(c)	Converge to $\frac{1}{2}$ ln 3	(d)	Converges to $\frac{8}{9}$
Ans	(a)	Diverges		
vii.	Integral $\int_{1}^{\infty} \frac{1}{x} dx$ converges if			
	(a)	P > 1	(b)	P < 1
	(c)	P = 1	(d)	None of the above
Ans	(a)	P > 1		
viii.	Find	$\int_{-\infty}^{\frac{\pi}{2}} \cos^{11}x \sin^9x dx$		
	(a)	1	(1-)	5! 4!
	(a)	10!	(b)	2(10!)
	(c)	10!	(d)	0
	(0)	5!4!		0
Ans	(b)	5! 4 !		
	(**)	2(10!)		
ix.	$\int_0^\infty x^3$	$\frac{3}{2}e^{-x} dx =$	1	
	(a)	$3\sqrt{\pi}$	(b)	$\frac{\pi}{2}$
		4		2
	(c)	$\sqrt{\pi}$	(d)	None of these
		5		
Ans	(a)	$\frac{3\sqrt{\pi}}{4}$		
<i>x</i> .	Identi	fy the definite integral that compu	tes the	e volume of the solid generated by revolving
	the re	gion bounded by the graph of $v =$	x^3 an	d the line $y = x$, between $x = 0$ and $x = 1$
	about the line $x = 1$.			
	(a)	$\frac{1}{2} \left(\frac{2}{2} \right)$	(b)	$\frac{1}{2}\left(1\right)^{2}$
		$\pi \int \left(y^{\overline{3}} - y^{2} \right) dy$		$\pi \int \left(y^{\overline{3}} - y \right) dy$
		0		0
	(c)	$2 - \int (4 - 2)(4 - 6) I$	(d)	$-\int (4 - 2^2 (4 - \frac{1}{2})^2) I$
		$2\pi \int_{0}^{2\pi} (4-x)(4-x) dx$		$\pi \int_{0}^{1} (4-y) (4-y^{3}) dx$
				·
Ans	(a)	$\pi \int (v^{\frac{2}{3}} - v^2) dv$		
Q2.	Atten	npt any ONE question from the fol	lowin	g: (08)
a)	i.	Let $f: [a, b] \rightarrow IR$ be a bounded	functi	on. Prove that f is Riemann integrable on [a, b]
		if and only if for any $\in > 0$ there	exist :	a partition P of $[a, b]$ such that
		$\int \mathbf{D} \mathbf{r} = \mathbf{D} \mathbf{r} = \mathbf{r} + \mathbf{I} + $	(f, P)	$) - L(f, P) < \in.$
		Alls. FIOUL: $(4+4 \text{ lllarKS})$		
	ł	If $f: a: [a, b] \rightarrow IP$ are P inte	grable	then prove that $f + q$ is R- integrable &
	ii.	$[\Pi], g, [u, v] \rightarrow I \Lambda u i e \Lambda - i \Pi e$	C	
	ii.	$\int_{a}^{b} f + a = \int_{a}^{b} f + \int_{a}^{b} a$	0	1 , 0 , 0
	ii.	$\int_{a}^{b} f + g = \int_{a}^{b} f + \int_{a}^{b} g$	6	1 , 0 0

		let $M_i = \sup\{(f+g)(x)/x \in [x_{i-1}, x_i]\} \& m_i = \inf\{(f+g)(x)/x \in [x_{i-1}, x_i]\}$ let $M'_i = \sup\{f(x)/x \in [x_{i-1}, x_i]\} \& m'_i = \inf\{f(x)/x \in [x_{i-1}, x_i]\}$ let $M''_i = \sup\{g(x)/x \in [x_{i-1}, x_i]\} \& m''_i = \inf\{g(x)/x \in [x_{i-1}, x_i]\}$ then $M_i \leq M'_i + M''_i$ and $m_i \geq m'_i + m''_i$ for $i=1,2,,n$ Hence $U(P,f+g) - L(P,f+g) \leq U(P,f) - L(P,f) + U(P,g) - L(P,g)(*)$ But $f \& g$ are R - integrable on $[a,b]$ hence there are partitions say P_1 and P_2 Such that $U(P_1,f) - L(P_1,f) < \frac{\epsilon}{2}$ and $U(P_2,g) - L(P_2,g) < \frac{\epsilon}{2}$ Take $P=P_1 \cup P_2$ Then $U(P,f) - L(P,f) < \frac{\epsilon}{2}$ and $U(P,g) - L(P,g) < \frac{\epsilon}{2}$ Hence $U(P,f+g) - L(P,f+g) < \epsilon$ by * Therefore $f+g$ is R -integrable on $[a,b]$ 4 marks Prove that $\int_a^b f + g < \int_a^b f + \int_a^b g + \epsilon$
		$\int_{a}^{b} f + g > \int_{a}^{b} f + \int_{a}^{b} g - \epsilon \text{for every } \epsilon > 0 \qquad 4 \text{ marks}$
Q.2	Attem	npt any TWO questions from the following: (12)
<i>b</i>)	i.	Let f be a bounded function on [a, b]. Let P and P' are two partitions of [a, b] with $P \subseteq P'$. Show that L (f, P') \geq L (f, P) Let P={x0, x1,, xn] be a partition of [a,b]. Given P is subset of Q Let y1,y2,ym are extra points which are in Q but not in P. Let P1=P \cup {y1}.let y1 \in [$xj - 1, xj$]2 marks L(P,f) - L(P1,f)=($m_j - m'_j$)(y1-xj-1)+ ($m_j - m''_j$)(xj- y1) \leq 0 Where mj = inf{f(x)/x \in [xj-1,xj] } m'j = inf{f(x)/x \in [xj-1,y1] } m'j = inf{f(x)/x \in [xj-1,y1] } As m'j \geq mj and m''j \geq mj 3 marks Therefore L(P1,f) \geq L(P,f) Similarly , L(P2,f) \geq L(P1,f) L(Pm,f) \geq L(Pm-1,f) \geq L(Pm-2,f) \geq L(P,f) but Pm=P'1mark L(P',f) \geq L(P,f)
	ii.	If <i>f</i> is an R-integrable function on [<i>a</i> , <i>b</i>] then prove that <i>f</i> is R-integrable on [<i>a</i> , <i>b</i>]. Given: <i>f</i> is <i>R</i> integrable on [<i>a</i> , <i>b</i>]. Claim: <i>f</i> is R integrable on [<i>a</i> , <i>b</i>]. Let $P = \{x_0 = a, x_1, x_2, \dots, x_n = b\}$ be any partition of [<i>a</i> , <i>b</i>] Let $M_i = \sup\{f(x) : x \in [x_{i-1}, x_i]\}$ and $M'_i = \sup\{ f (x) : x \in [x_{i-1}, x_i]\}$ $m_i = \inf\{f(x) : x \in [x_{i-1}, x_i]\}$ and $m'_i = \inf\{ f (x) : x \in [x_{i-1}, x_i]\}$, $i = 1, 2, \dots, n$. To show that, $M'_i - m'_i \le M_i - m_i$, $i = 1, 2, \dots, n$. Let, $x, y \in [x_{i-1}, x_i]$ $m_i \le f(x) \le M_i$
		$m_i \le f(y) \le M_i$

		$\therefore m_i - M_i \le f(x) - f(y) \le M_i - m_i$
		$\therefore -m_i - M_i \le f(x) - f(y) \le M_i - m_i$
		Consider, f(y) - f(y) - f(y) + f(y)
		$ f(x) - f(y) + f(y) \\ \leq f(x) - f(y) + f(y) $
		$\leq f(x) - f(y) + f(y) $ $\leq M_{1} - m_{1} + f(y) $
		Here $y \in [x_i \land x_i]$
		$ f(x_i) \le M_i - M_i + f(y_i) , \ \forall x \in [x_{i-1}, x_i]$
		$\therefore M_i - m_i + f(y) $ is an upper bound of $\{f(x) : x \in [x_{i-1}, x_i]\}$.
		$\therefore M'_i < M_i - m_i + f(v) $, ($\therefore M'_i$ is least of upper bound)
		$\therefore M'_i - M_i + m_i \leq f(y) , \forall y \in [x_{i-1}, x_i]$
		$\therefore M'_i - M_i - m_i$ is lower bound of $\{f(x) : x \in [x_{i-1}, x_i]\}$.
		$\therefore M'_i - M_i + m_i \le m_i' (\because m_i' \text{ is greatest lower bound})$
		: $M'_{i} - m'_{i} \le M_{i} - m_{i}, i = 1, 2,, n.$ 3 marks
		Multiplying above relation by $(x_i - x_{i-1})$ and adding above <i>n</i> relations we have,
		$U(f , P) - L(f , P) \le U(f, P) - L(f, P) $ (*)
		As, f is R integrableon $[a, b]$.
		Hence, for given $\epsilon > 0$, \exists partition P_{ϵ} of $[a, b]$ such that,
		$U(f, P_{\epsilon}) - L(f, P_{\epsilon}) < \epsilon$
		∴ by (*)
		$U(f , P_{\epsilon}) - L(f , P_{\epsilon}) < \epsilon$
		\therefore f is R integrable on [a, b]
	iii.	Using Riemann Criterion prove that the function $f: [0, 1] \rightarrow \mathbb{R}$ defined by
		f(x) = x is Riemann integrable.
		Ans: define the partition $0 < 1/n < 2/n < 3/n$
		Find U(f,P)
		$L(f,P)$ and prove that $U(f,P)-L(f, P) < \in$
	iv.	If f, $g : [a, b] \rightarrow \mathbb{R}$ are integrable functions such that
		$f(r) \leq q(r)$ $\forall x \in [a, b]$ then prove that $\int_{a}^{b} f(r) dr \leq \int_{a}^{b} q(r) dr$
		$\int (x) \ge g(x), \forall x \in [a, b] \text{ then } prove \text{ that } \int_a^b f(x) dx \ge \int_a^b g(x) dx.$
		Prove that if $g(x) \ge 0$ then $\int_a^b g(x) dx \ge 0$
		Using this prove that $f(x) \le g(x)$, $\forall x \in [a, b]$ implies $\int_a^b f(x) dx \le \int_a^b g(x) dx$.
Q3.	Atten	npt any ONE question from the following: (08)
a)	i.	State and prove the Fundamental Theorem of Calculus.
Ans		Statement: Let $f:[a, b] \to \mathbb{R}$ be R-integrable on $[a, b]$ and $F(x) = \int_{a}^{x} f(t) dt, \forall x \in \mathbb{R}$
		[a, b]. If f is continuous on [a, b] then F is differentiable and $F'(x) = f(x)$.
		Proof: Let $h > 0$ such that $x + h \in [a, b]$. Then
		$\frac{F(x+h)-F(x)}{h} = \frac{1}{h} \left[\int_{x}^{x+h} f(t) dt \right]$ since f is continuous on $[x, x+h]$ hence bounded.
		Let $\sup(f) = M$ and $\inf(f) = m \Rightarrow m \le \frac{1}{h} \int_{x}^{x+h} f(t) dt \le M \Rightarrow \exists c \in [x, x+h]$ such that
		$\frac{1}{h}\int_{x}^{x+h} f(t) dt = f(c(h)).$ since $x \le c(h) \le x + h \Rightarrow c(h) = x \text{ as } h \to 0.$ hence the
		proof.

	<u>ii</u> .	State and prove comparison test for improper integrals of type-I.
Ans		Statement If $ f(x) \le k g(x) $ for all $x \ge x_0$ then
		Convergence of $\int_{a}^{\infty} g(x) dx$ implies Convergence of $\int_{a}^{\infty} f(x) dx$ and divergence of $\int_{a}^{\infty} f(x) dx$ implies divergence of $\int_{a}^{\infty} g(x) dx$ (2M)
		Proof : Part 1: Given $\int_{a}^{\infty} g(x) dx$ is Convergent By Cauchy's Criterion for any $\varepsilon > 0$, there exists $x_1 > a$ such that for all $y > x \ge x_1 > a$, $ \int_{x}^{y} g(x) dx < \frac{\varepsilon}{k}$ Let $x_2 = \max\{x_0, x_1\}$ For all $y > x \ge x_2 > a$, $ \int_{x}^{y} f(x) dx \le \int_{x}^{y} k g(x) dx < \varepsilon$ By Cauchy's Criterion $\int_{a}^{\infty} f(x) dx$ is convergent Part 2: Given $\int_{a}^{\infty} f(x) dx$ is divergent. (4M) TPT $\int_{a}^{\infty} g(x) dx$ is divergent. Suppose $\int_{a}^{\infty} g(x) dx$ is convergent, which is not true
		Hence our assumption is wrong Proved $(2M)$
Q3.	Attem	npt any TWO questions from the following: (12)
<i>b</i>)	i.	Let $F : [0,1] \to \mathbb{R}$ be defined by $F(x) = \begin{cases} x^2 \sin\left(\frac{\pi}{x}\right) & \text{if } 0 < x \le 1 \\ 0 & \text{if } x = 0 \end{cases}$ Show that is differentiable over $[0,1]$. Let $f : [0,1] \to \mathbb{R}$ be given by $f(x) = F'(x)$. find $\int_{-1}^{1} f(t) dt$.
Ans		$F'(x) = \begin{cases} 2x \sin\left(\frac{\pi}{x}\right) - \pi \cos\left(\frac{\pi}{x}\right) & x \neq 0 \\ 0 & x = 0 \end{cases} \text{ and } \int_0^1 f(t) dt = F(1) - F(0) = 0.$
	ii.	Evaluate $\lim_{x \to \infty} \frac{1}{x^3} \int_0^x \frac{t^2}{1+t^4} dt$
Ans		Let $F(x) = \int_0^x \frac{t^2}{1+t^4}$. Since $f(t) = \frac{t^2}{1+t^4}$ is continuous \therefore by FTC <i>F</i> is differentiable and $\Rightarrow F'(x) = f(x)$. $\therefore \lim_{x \to \infty} \frac{1}{x^3} \int_0^x \frac{t^2}{1+t^4} dt = \lim_{x \to \infty} \frac{F(x)}{x^3} = \lim_{x \to \infty} \frac{F'(x)}{2x^2} = 0$.(by L
		Hospitals rule) $x^{3} = 0$ $1 + t^{2}$ $x^{3} = 0$ $3x^{2}$
	iii.	Prove that $\int_{a}^{b} \frac{1}{(b-x)^{p}} dx$ converges if and only if $p < 1$.
Ans		Standard proof:

		$P=1\int_{a}^{b} \frac{1}{(b-x)^{p}} dx = \lim_{x \to b-} \int_{a}^{x} \frac{1}{b-x} dx$
		$= \lim_{x \to b^{-}} -\log(b-x) + \log(b-a), diverges to \infty $ (2)
		$p \neq 1 \int_{a}^{b} \frac{1}{(x-y)^{p}} dx = \lim_{x \to b^{-}} \int_{a}^{x} \frac{1}{(x-y)^{p}} dx = \lim_{x \to b^{-}} \frac{(b-a)^{-p+1}}{(x-y)^{p+1}} - \frac{(b-a)^{-p+1}}{(x-y)^{p+1}} $ (1)
		for $p \ge 1$,divergent $x \to b = a (b-x)^p$ $x \to b = p-1$ $p-1$
		for p <1,convergent and converges to $\frac{(b-a)^{-p+1}}{-p+1}$ (3)
	iv.	State Abel's and Dirichlet's Tests for the conditional convergence of type 1 improper
		integral and discuss convergence of $I = \int_0^\infty \sin x^2 dx$
Ans		
		Abel's Tests: If f is Reimann integrable on $[a \infty)$ and β is monotonic and bounded on $[a \infty)$ then
		function (f β) is Reimann integrable on [a, ∞)
		Dirichlet's Tests:
		If f is Reimann integrable on [a,x), for all $x \ge a$, if $F(x) = \int_a^x f(x) dx$ and if β is
		monotonic and if $\lim_{x\to\infty} \beta(x) = 0$ then function (f β) is Reimann integrable on $[a,\infty)$
		$I = \int_0^1 \sin x^2 dx + \int_1^\infty \sin x^2 dx = I_1 + I_2$
		I_1 proper integral $I_2 = \int_{-\infty}^{\infty} (2\pi i \pi m^2)^{-1} dm$
		$I_2 = J_1 (2x \sin x^2) \frac{1}{2x} dx$
		Let $f(x)=2x\sin x^2\beta(x)=\frac{1}{2x}$
		$\operatorname{Put} x^{2} = t$ $ \int_{0}^{x} (2 \operatorname{vsin} r^{2}) dr = \cos 1 - \cos r^{2} \leq 2$
		Since f is conti, f is R-integrable on $[1,x]$ and the integral is bounded.
		$\lim_{x\to\infty}\beta(x)=0$
		ByDirichlet's Test I is convergent
Q4.	Atten	ppt any ONE question from the following: (08)
a)	i.	Prove that $\int_0^1 x^{m-1}(1-x)^{n-1} dx$ converges if and only if <i>m</i> and <i>n</i> are both positive.
Ans		For $m \ge 0$, $n \ge 0$ the integral is proper. When $m \le 1$, infinite discontinuity at 0 and
		when $n \le 1$, infinite discontinuity at 1.
		$\int_{0}^{\infty} x^{m-1} (1-x)^{n-1} dx = \int_{0}^{\infty} x^{m-1} (1-x)^{n-1} dx + \int_{1/2}^{1} x^{m-1} (1-x)^{n-1} dx = I_{1} + I_{2}$
		For I ₁ , $f(x) = \frac{(1-x)^{n-1}}{x^{1-m}}$, $g(x) = \frac{1}{x^{1-m}}$. $\lim_{x \to 0} \frac{f(x)}{g(x)} = 1$. By comparison test
		$\int_{0}^{\frac{1}{2}} f(x) dx, \int_{0}^{\frac{1}{2}} g(x) dx \text{ converge and diverge together.}$
		$\int_{0}^{\frac{1}{2}} g(x) dx = \int_{0}^{\frac{1}{2}} \frac{1}{x^{1-m}} dx \text{ converges iff } 1 - m < 1 \text{ i.e. } m > 0.$
		For I ₂ (x) = $\frac{x^{m-1}}{(1-x)^{1-n}}$, $g(x) = \frac{1}{(1-x)^{1-n}}$. Same approach as above.

	ii.	With usual notations for beta and gamma functions prove that
		(p) $\beta(m, n) = \beta(n, m)$ (q) $\frac{\beta(m, n+1)}{n} = \frac{\beta(m+1, n)}{m} = \frac{\beta(m, n)}{m+n}$.
Ans		$\beta(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx = -\int_1^0 (1-y)^{m-1} y^{n-1} dx = \beta(n,m)$
		$\beta(m+1,n) + \beta(m,n+1) = \int_0^1 [x^m(1-x)^{n-1} + x^{m-1}(1-x)^n] dx = \beta(m,n)$
		By integration by parts $\beta(m, n + 1) = \frac{n}{m}\beta(m + 1, n)$ (Student must show)
		$\beta(m,n) = \beta(m+1,n) + \beta(m,n+1) = \beta(m+1,n) + \frac{n}{m}\beta(m+1,n) =$
		$\frac{m+n}{\beta}\beta(m+1,n).$
		Hence the proof.
Q4.	Attem	npt any TWO questions from the following: (12)
b)	i.	Prove that
		$\beta(m,n) = \int_{-\infty}^{\infty} \frac{t^{m-1}}{t^{m-1}} dn$
A		$p(m,n) - J_0 \frac{1}{(1+t)^{m+n}} dy.$
Ans		$\beta(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx$
		Substitute $x = \frac{t}{1+t}$. $\beta(m,n) = \int_0^\infty \left(\frac{t}{1+t}\right)^{m-1} \left(1 - \frac{t}{1+t}\right)^{n-1} \frac{dt}{(1+t)^2} = \int_0^\infty \frac{t^{m-1}}{(1+t)^{m+n}} dy$
	ii.	Show that : $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.
		2
Ans		$\beta\left(\frac{1}{2},\frac{1}{2}\right) = \left(\Gamma\left(\frac{1}{2}\right)\right)^2$
		$(1, 1)$ $(\frac{\pi}{2}, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1$
		$\beta\left(\frac{1}{2},\frac{1}{2}\right) = 2 \int_0^1 \sin^{\frac{1}{2}-1} \theta \cos^{\frac{1}{2}-1} \theta d\theta = \pi$
	iii.	Find the volume of the solid whose base is the disk $x^2 + y^2 \le 1$ and the cross
		sections by the planes perpendicular to the $y - axis$ between $y = -1$ and $y = 1$ are
		isosceles right triangles with one leg in disk by the method of slicing.
Ans		Length of the base $=2\sqrt{1-y^2}$.
		Area of the triangle= $(\frac{1}{2})(2\sqrt{1-y^2})^2 = 2(1-y^2).$
		Volume= $2\int_{-1}^{1}(1-y^2)dy = \frac{8}{2}$.

	iv. Find the volume of the solid generated by revolving the regions bounded by the
	lines $y = 2x$, $y = x$, $x = 1$ and about $x - axis$ by the washer method.
Ans	r(x) = x, R(x) = 2x.
	Area by washer method= $\int_{0}^{1} \pi [4x^2 - x^2] dx = \pi$.
Q5.	Attempt any FOUR questions from the following: (20)
_	
a)	If $f(x) = 1 + 2x$, $x \in IR$ and P be a partition such that $0 < 0.25 < 0.5 < 0.75 < 1$
,	Then find U(P, f).
	Ans:U(P, f) = $0.25(1.5+2+2.5+3)=3.6$
<i>b</i>)	If f is Riemann integrable on [a, b] then for any $k \in IR$ prove that kf is also Riemann
	integrable on $[a, b]$.
()	Alls: Prove that $U(P, KI) - L(P, KI) < E$ Show that if $F'(r) = 0$, $\forall r \in [a, b]$ then f is a constant function
C	Show that if $f'(x) = 0$, $\forall x \in [u, b]$ then f is a constant function.
Ans	since f is differentiable hence continuous on $[a, x]$
	By LMVT $\exists c \in (a, x)$ such that $f'(c) = \frac{f(x) - f(a)}{x - a} \Rightarrow f(x) - f(a) = 0 \Rightarrow f(x) = f(a), \forall x$
<i>d</i>)	Identify the type and discuss the convergence of each of the following integrals
	(1) $\int_{-\infty}^{1} dx$ (11) $\int_{-\infty}^{\infty} \sin^2 x dx$
	$(I) \int_0 \frac{1}{x^2(1+x)^3} \qquad (II) \int_1 \frac{1}{x^2} dx$
Ans	(I) $f(x) = \frac{dx}{x^2(1+x)^3}$
	Let $g(x) = \frac{1}{r^2}$
	$\lim_{x\to 0+} \frac{f}{a} = 1$, finite nonzero
	since $\int_{a}^{b} q(x) dx$ is not cet (n=2) by limit comparison Test
	$(II)\frac{\sin^2 x}{x^2} \leq \frac{1}{x^2}$ for all $x > 1$
	since $P=2>1, \int_{1}^{\infty} g(x) dx$ is cgt.
	By comparison Test $\int_{1}^{\infty} f(x) dx$ is cgt.
<i>e</i>)	Prove that $\int_{-\infty}^{\frac{\pi}{2}} \sqrt{\sin x} dx \int_{-\infty}^{\frac{\pi}{2}} \frac{1}{-1} dx = \pi$.
	$\frac{\pi}{\sqrt{\cos x}} = \frac{\pi}{\sqrt{\cos x}}$
Ans	$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{\sin x} dx - \frac{1}{2} \beta \left(\frac{3}{2} - \frac{1}{2} \right)$
	$\int_{0_{\pi}}^{0_{\pi}} \sqrt{3} \ln x dx = 2^{p} (4'2)$
	$\int_{1}^{\frac{n}{2}} 1 = \int_{1}^{1} \int_{1$
	$\int_0^{\infty} \frac{dx}{\sqrt{\cos x}} dx = \frac{1}{2} \rho \left(\frac{1}{2}, \frac{1}{4} \right)$
0	Using beta gamma relationship get the result.
<i>f</i>)	Find the area of the surface generated by revolving the curves about $x = 2\sqrt{4 - y}, 0 \le y \le 1$
	$\frac{15}{4}$ about y - axis.
A	4
Ans	Surface area = $\int_{0}^{\frac{15}{4}} 2\pi x \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy = 2\pi \int_{0}^{\frac{15}{4}} \sqrt{5 - y} dy = \frac{35\sqrt{5}}{6}\pi.$
