Answer Key

Exam – S.Y.B.Sc. Sem IV CBCS April 2019

Subject – Chemistry Paper II Exam Date – 27.04.2019

Q.P. code - 65416

1.	(A)	Select	the correct option	and complete the followin	g sentences. (any twelve)	12	
		(i)	There are	crystal system and	Bravais lattices.		
			(a) 7 ,14	(b) 14,7	(c) 7,7		
		(ii)	The total number of effective atoms in body centered cubic system is				
			(a) 4	(b) 2	(c) 3		
		(iii)	A accelerates a reaction by decreasing the energy of				
			activation of the reaction.				
			(a) <u>catalyst</u>	(b) inhibitor	(c) pressure		
		(iv)	The enzyme which can catalyse the conversion of into glucose				
			is maltase.				
			(a) maltose	(b) invertase	(c) zymase		
		(v)	The	_ equation for diffraction	of X-rays is $n\lambda = 2d\sin\theta$.		
				(b) Plank's			
		(vi)	The total number	of effective atoms in	system is 2.		
		• •	(a) face centre	ed cubic (b) bodycentred	l cubic (c) simple cubic.		
		(vii)	pKa range for str	ongly acidic cation is in b	etween (c) -4 to 1.		
			(a) 1 to 6		(c) -4 to 1		
		(viii)		ongly acidic if z^2/r is in be			
			(a) 0.1 to 0.16	6 (b) 0.01 to 0.0	04 (c) 0.04 to 0.1		
		(ix)	Pure phosphoric acid is (c) white crystalline solid.				
			(a) yellowish	(b) greyish	(c) white		
		(x)	(a) H_2SO_4 acid is responsible for acid rain.				
			$(a) H_2 \overline{SO_4}$	(b) HCl	(c) CH ₃ COOH		
		(xi)	pKa values are greater than 14 for (a) non acidic cation.				
			(a) non acidic	c (b) weakly aci	dic (c) feebly acidic		
		(xii)	(b) H_2SO_4 is call	led king of chemicals.			
			(a) HNO_3	(b) H_2SO_4	(c) H_3PO_4		
		(xiii)	Two moles of	diketone are required	l in Hantzsch synthesis of		
			pyridine.				
			<u>(a)</u> <u>1,3</u> -	(b) 1,4-	(c) 1,5-		
		(xiv)	Electrophilic sub	estitution reaction in furan	takes place at position		
			$\underline{(a)}$ 2 and 5	(b) 3 and 5	(c) 3		
		(xv)	Sulphonation of furan can be carried out by action of				
			(a) H_2SO_4	(b) SO_3 and	pyridine (c) oleum		
		(xvi)	Benzene diazoni	um chloride when reduced	l with NaHSO ₃ gives phenyl		
		· -/	hydrazine.		··· ·· · · · · · · · · · · · · · · · ·		
			(a) phenyl hy	drazine (b) phenyl hyd	razone (c) hydrazobenzene		

		(xvii)	nitroaniline Reaction of aniline with bromine wat tribromoaniline .	and o-	nitroaniline (c) p- and m-	
	 (B) State whether the following statements are true or false. (any three) (i) As temperature increases the rate of reaction decreases and the energy of activation increases FALSE (ii) Sodium chloride crystallises in the face centred cubic lattice form TRU (iii) Hydrolysis of hydrated cation renders the solution basic FALSE (iv) Phosphoric acid is a mineral acid TRUE (v) Friedel - Crafts reaction of the furan can be carried out by using AlCl₃ FALSE (vi) Pyrrolidine is a stronger base than pyrrole TRUE 				lse. (any three) decreases and the energy of ed cubic lattice form TRUE attion basic FALSE - TRUE arried out by using AlCl ₃	3
	(C)	(i)	the column. (any five) Inhibitor - i Promoter - d Weakly acidic cation - a Moderately acidic cation - b Dimethyl amine - c Aniline - g	(a) (b) (c) (d) (e) (f) (g) (h) (i)	~	5
2.	Attempt any four of the following. (A) What are (100), (110) and (111) planes for the body-centred cube? i) Drawing and explanation of (100) plane-1.5 marks ii) Drawing and explanation of (110) plane-1.5 marks iii) Drawing and explanation of (111) plane-1.5 marks iv) All correct- 0.5 marks				20	
	 (B) How are X-rays used to determine the interplanar distances in cubic crystals? i) Diagram with explanation of X-ray spectrometer -02 marks ii) Determine the interplanar distances in cubic crystals -03 marks 					
	(C)	(C) Derive Michalis-Menten equation for enzyme catalysis. i) Reaction with differential equation – 01 mark ii) Steady state approximation -01 mark iii) Concentration of free enzyme- 01 mark iv) Michalies-Menten equation -01 mark				

- (D) Explain characteristic features of a catalysis.
 - i) Catalyst lowers the energy of activation -01 mark
 - ii) The catalyst does not change either the position or the magnitude of the equilibrium constant-01 mark
 - iii) A catalyst remains unchanged in mass and chemical composition at the end of the reaction-01 mark
 - iv) A small quantity of catalyst is sufficient -01 mark
 - v) The catalyst does not initiate the reaction-01 mark
- (E) An inorganic salt of molecular weight 74.36 and density 1.874 x 10³Kg.m⁻³ crystallises in a form like NaCl. Calculate the length of the edge of the unit cell if Avogadro's number is 6.023 x 10²³ molecules mol⁻¹.
 - i) Given terms-0.5 mark
 - ii) Formula -0.5 mark
 - iii) Correct value substitution -01 mark
 - iv) Calculation of 2d100 value -02 marks
 - v) Correct answer with unit 01 mark
- (F) Explain the kinetics of acid-base catalysis.
 - i) Acid-Base catalysis explanation 03 marks
 - ii) Two examples -02 marks.
- 3. Attempt any **four** of the following.
 - (A) Explain the process of hydration of cation with suitable diagram. How can cation render acidity to the solution?
 - (i) Diagram of hydration and or diagram to furnish H⁺ 1 mark
 - (ii) Reason for H⁺ furnishment 1 mark
 - (iii) General Chemical equation 1 mark
 - (iv) Explanation of diagram and equation 1 mark
 - (v) Example 1 mark
 - (B) Explain the relationship between pK_a , acidity and Z^2/r ratio of monoatomic cations by means of graphical presentation.
 - (i) Plot 2 mark
 - (ii) Different types -3 mark
 - (C) With the help of predominance diagrams explain non acidic cations and feebly acidic cations with suitable examples.
 - (i) Example $-\frac{1}{2}$ mark
 - (ii) Predominance diagram 1 mark
 - (iii) Explanation 1 mark

For each type viz. – non acidic cations and feebly acidic cations

- (D) Write Latimer equation to calculate hydration energy of anion and explain the terms involved in it. Using this equation, calculate ΔH_{hyd} for F ion. (Given radius of F ion is 119pm.)
 - (i) Latimer equation 1 mark
 - (ii) Terms
- 1 mark

		(iii) Substitution - 1 mark (iv) Calculation and answer with unit 479kJ/mol - 2 mark	
	(E)	Write physical properties of sulphuric acid.	
	(F)	Five physical properties – 1 mark each Write a note on uses of phosphoric acid.	
	(1)	Five uses – 1 mark each	
4.		mpt any four of the following.	
	(A)	(i) Give the preparation of a) 2-chlorothiophene, b) 2-nitrothiophene and	3
		c) thiophene-2-sulphonic acid from thiophene.	
		Conditions in preparation – 1 mark each	2
		(ii) Discuss aromaticity of furan.	2
		Huckel's Rule – 1 mark, Explanation (furon satisfy Huckel's Rule) 1 mark	
	(B)	Explanation (furan satisfy Huckel's Rule)— 1 mark (i) Explain Chichibabin reaction of pyridine.	3
	(D)	Reaction – 2 mark, Description - 1mark	3
		(ii) Give the carbylamine reaction of primary amines.	2
		Description 1mk, reaction 1mk	_
	(C)	(i) 'Pyridine gives nucleophilic substitution at 2,4 and 6 positions'. Explain.	3
	` ,	Resonance structure of Pyridine – 1 mark, Description -2 mark	
		(ii) How is primary amine obtained by reductive amination of aldehyde and	2
		ketone?	
		Reaction of Aldehyde with NH ₃ , H ₂ /Ni 1mk	
		Reaction of ketone with NH ₃ , H ₂ /Ni 1mk	
	(D)	(i) Write a note on Hofmann exhaustive methylation (HEM).	3
		Reaction 5 steps 2 ½ mk, description ½ mk	
		(ii) Give Paal-Knorr synthesis for the preparation of pyrrole.	2
		Starting material, Reagent, Reaction Condition, Product - ½ X 4 mark	2
	(E)	(i) How will you distinguish between ethyl amine, diethyl amine and triethyl amine using nitrous acid?	e 3
		Ethylamine to Ethanol - 1mk, diethyl amine to N-Nitrosoamine - 1mk,	
		Triethylamine to Triethyl ammonium nitrite - 1 mk	
		(ii) Explain Vilsmeier-Haack reaction of pyrrole.	2
		Formation of Iminium salt – 1 mark	_
		Formation of 2- Formyl pyrrole – 1 mark	
	(F)	(i) Give azo-coupling reaction of benzene diazonium chloride with a) Phenol and	3
		b) N,N-dimethyl aniline.	
		Reaction with phenol (with description) $-1\frac{1}{2}$ mk,	
		Reaction with N,N-Dimethyl aniline (with description) $-1 \frac{1}{2}$ mk	
		(ii) How is hydrazobenzene prepared from nitrobenzene?	2
		Reaction with description of nitrobenzene with Zn dust and aqs. NaOH to	
		Hydrazobenzene - 1 ½ mk	
5.	Δ tto	mpt any four of the following.	
J.	(A)	Sodium chloride has a facecentred cubic lattice and the length of the cube edge is	5
	(11)	6.56A°. Calculate d ₁₁₀ and d ₁₁₁ .	J
		on or a contraction of the office.	

	i) Given terms-0.5 mark ii) Formula -0.5 mark			
	iii) Correct value substitution -01 mark			
	iv) Calculation of d ₁₀₀ and d ₁₁₁ value - 02 mark			
	v) Correct answer with unit – 01 mark			
(B)	Write a note on activity of nano particles as a catalyst.			
	i) Method of preparation of nanoparticles -01 mark			
	ii) Nanocatalysis - 02 mark			
	iii) Explanation with example -02 mark			
(C)	With the help of suitable predominance diagram, explain the behaviour of F and			
	S ²⁻ in aqueous solution.			
	(i) pKb range − ½ mark			
	(ii) Predominance diagram – 1 mark			
	(iii) Explanation – 1 mark			
	Like wise 2 and $\frac{1}{2}$ mark for each ion viz. F and S ²			
(D)	Write a note on acid rain.	5		
	(i) Acid rain cause – 1 mark			
	(ii) Consequenses – 2 mark			
	(iii) Remedies - 2 mark			
(E)	(i) Describe Hofmannn degradation of amides.	3		
Detailed Reaction - 2 mk, Description - 1mk				
	(ii) How is chlorobenzene obtained by Sandmeyer reaction?	2		
	Reaction of aromatic diazonium salt with Cu ₂ Cl ₂ /HCl – 1mk			
	Description – 1mk			
(F)	(i) Explain Diel's-Alder reaction of furan.	3		
	Explanation – 2 mark, Example – 1 mark			
	(ii) Why is pyridine more basic than pyrrole?	2		
	Explanation – 2 mark			

== XXXXXX ==