S.Y. B.A./B. Sc. Semester IV Mathematics Paper I (Old) Exam Date 23/04/19 Q.P.Code 66034 <u>Answer Key</u>

(3 Hours)

[Total Marks: 100]

Note: (*i*) All questions are compulsory.

(*ii*)Figures to the right indicate marks for respective parts.

Q.1	Choose correct alternative in each of the following (20)				
<i>i</i> .	Which of the following sequences does not have a convergent subsequence				
	(a)	(n + 2)	(b)	1, 0,2 ,1 ,0, 2,	
	(c)	$\left(\frac{1}{n}\right)$	(d)	None of these	
Ans	(a)	(n + 2)			
ii.	If the x be	e decimal representation of a num longs to	ber x i	s non terminating, non periodic then the number	
	(a)	Q	(b)	$\mathbb{R} \setminus \mathbb{Q}$	
	(c)	N	(d)	None of these	
Ans	(b)	R\Q			
iii.	Whi	ch of the following sets is uncount	able		
	(a)	R	(b)	N Cul	
	(c)	Q	(d)	None of these	
Ans	(a)	R			
iv.	Let P and Q be any two Partitions of interval [a,b]. Then the statement that is always true is		[a,b]. Then the statement that is always true is		
	(a)	$L(P,f) \leq U(Q,f)$	(b)	$U(P,f) \leq U(Q,f)$	
	(c)	$U(P,f) \leq L(Q,f)$	(d)	None of these	
Ans	(a)	$L(P,f) \leq U(Q,f)$			
v.	$f: [a, b] \rightarrow \mathbb{R}$ is <i>R</i> -integrable on $[a, b]$. Then				
	(a)	f^2 and $ f $ are <i>R</i> -integrable on $[a, b]$.	(b)	f^2 is <i>R</i> -integrable on $[a, b]$ but $ f $ may or may not be so.	
	(c)	Both f^2 and $ f $ are not <i>R</i> -integrable on $[a, b]$.	(d)	None of these	

Ans	(a)	f^2 and $ f $ are <i>R</i> -integrable on $[a, b]$.		
vi.	Let j (Wh	Let $f : [0, 100] \rightarrow \mathbb{R}$ be defined as $f(x) = \lfloor x \rfloor$, (Where $\lfloor x \rfloor$ is floor function of x). Then		
	(a)	<i>f</i> is discontinuous hence not <i>R</i> -integrable.	(b)	f is R-integrable and $\int_0^{100} f(x) dx = 5000$
	(c)	f is R-integrable and $\int_0^{100} f(x) dx = 4950$	(d)	None of these
Ans	(c)	f is R-integrable and $\int_0^{100} f(x) dx = 4950$		
vii.	Gam	ma function $\Gamma(n)$ is defined as	I	
	(a)	$\int_0^1 e^{-x} x^{n-1} dx, n > 0$	(b)	$\int_{0}^{1} e^{x} x^{n-1} dx, n > 0$
	(c)	$\int_0^\infty e^{-x} x^{n-1} dx, n > 0$	(d)	$\int_0^\infty e^x x^{n-1} dx, n > 0$
Ans	(c)	c) $\int_0^\infty e^{-x} x^{n-1} dx$, n>0		
viii.	Find	Find $\int_{2}^{\frac{\pi}{2}} \sin^6 x dx$		
	(a)	0	(b)	$\frac{5\pi}{12}$
	(c)	$\frac{5\pi}{22}$	(d)	$\frac{5\pi}{6}$
Ans	(c)	$\frac{5\pi}{32}$		
ix.	β(m,r	l) =		
	(a)	$\int_{0}^{1} \frac{x^{m-1}}{(1+x)^{m-n}} dx$	(b)	$\int_{-\infty}^{1} \frac{x^{m-1}}{(1+x)^{m+n}} dx$
	(c)	$\int_0^1 \frac{x^{n-1}}{(1+x)^{m-n}} dx$	(d)	None of these
Ans	(b)	$\int_0^1 \frac{x^{m-1}}{(1+x)^{m+n}} dx$		
<i>x</i> .	$\int_0^1 \int_0^1$	$^{-y}f(x,y)dxdy=$		
	(a)	$\int_0^1 \int_0^x f(x, y) dy dx$	(b)	$\int_0^1 \int_0^{1-x} f(x,y) dy dx$
	(c)	$\int_0^1 \int_1^{1-y} f(x, y) dy dx$	(d)	None of these
Ans	(b)	$\int_0^1 \int_0^{1-x} f(x, y) dy dx$		

Q2.	Attem	ppt any ONE question from the following: (08)			
a)	i.	Using Nested Interval Theorem prove that every bounded sequence of real numbers has a convergent subsequence.			
	Ans	Let (x_n) be bounded. $S = \{x_n / n \in \mathbb{N}\}$ is subset of $I = [a,b]$ for some a , b in \mathbb{R} . Let $n_1 = 1$.Bisect I into two subintervals both of equal length $\frac{b-a}{2} \operatorname{say} I_1' I_1''$.			
		Let $A_1 = \{ n \in \mathbb{N}/n > n_1, x_n \in I_1' \} B_1 = \{ n \in \mathbb{N}/n > n_1, x_n \in I_1'' \}$ (2 marks) At least one of A_1, B_1 is infinite. Say A_1 is infinite .Then $I_2 = I_1'$			
		Let n_2 be minimum element of A_1 (2 marks) Else if B_1 is infinite .Then $I_2 = I_1^{''}$, n_2 be minimum element of B_1 Proceed similarly to get a nested sequence of intervals $I_1 \square I_2 \square \square I_n$ And a subsequence (x_{n_k}) of (x_n) such that $x_{n_k} \in I_k$, $k \in \mathbb{N}$ and length of $I_n = \frac{b-a}{r} \rightarrow 0$ as $n \rightarrow \infty$			
		$2^{n_{k-1}}$ (2 marks)			
		By Nested Interval Theorem there exists unique element c in $\bigcap_{n=1}^{\infty} I_n$ and \dots $(x_{n_k}) \rightarrow c(2 \text{ marks})$			
	ii.	Using Nested Interval Theorem prove that if $f : [a, b] \rightarrow \mathbb{R}$ is a continuous function with $f(a)f(b) < 0$, then there exists $c\epsilon(a, b)$ such that $f(c) = 0$.			
	Ans	Given $f(a)f(b) < 0$ Say $f(a) < 0 < f(b)$ Let $I_1 = [a_1, b_1]$ $a = a_1, b = b_1, p_1 = \frac{a_{1+}b_1}{2}$ (2 marks)			
		If $f(p_1) < 0$ then $a_{2=,}p_1$, $b_{2,} = b_1$, else if $f(p_1) < 0$ then $a_{2=,}a_{1,}$, $b_{2,} = p_{1,}$ Let $I_2 = [a_2, b_2]$, length of $I_2 = \frac{b-a}{2^1}$ Proceed similarly to get a nested sequence of intervals $I_1 \square I_2 \square \dots \square I_n \dots$ length of $I_n = \frac{b-a}{2^n} \to 0$ as $n \to \infty$			
		By Nested Interval Theorem there exists unique element c in $\bigcap_{n=1}^{\infty} I_n$ Since f is continuous and f $(a_{n_n}) < 0$; f $(b_{n_n}) > 0$ f(c)=0			
Q.2	Attem	ppt any TWO questions from the following: (12)			
<i>b</i>)	i.	If $I_n = \left(0, \frac{1}{n}\right)$ for all $n \in \mathbb{N}$ then prove that $\bigcap_{n=1}^{\infty} I_n = \phi$			

Ans	Suppose $x \in \bigcap_{n=1}^{\infty} I_n$
	Hence $x \in I_n$ for all $n \in \mathbb{N}$
	since $x \neq 0$ by A P $\exists n_0 \in \mathbb{N}$ s.t. $n_0 > \frac{1}{x}$
	x does not belong to I_{n_0}
	x does not belong to $\bigcap_{n=1}^{\infty} I_n$
	Contradiction
ii.	Prove that any real number $x \in [0, 1]$ can be represented in decimal representation.4
Ans	Divide [0,1] into 10 equal parts of length $\frac{1}{10}$
	Hence $x \in [\frac{b_1}{10}, \frac{b_1+1}{10}) \ \Box [\frac{b_1}{10}, \frac{b_1+1}{10}]$, for some $b_1 \in \{0, 1, \dots, 9\}$
	If $x \in \frac{b_1}{10}$, $x = 0. b_1$ process terminate
	Else $b_1 b_1+1$ $b_2 b_1 b_2 b_1 b_2 b_1 b_2 b_1 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_2 b_1 b_2 b_2$
	Let $I_1 = \begin{bmatrix} 1 \\ 10 \end{bmatrix}$ Divide I_1 into 10 equal parts of length $\frac{1}{10^2}$
	Hence $x \in [\frac{1}{10} + \frac{1}{10^2}, \frac{1}{10} + \frac{1}{10^2}] \cup [\frac{1}{10} + \frac{1}{10^2}, \frac{1}{10} + \frac{1}{10^2}]$, for some $b_2 \in \{0, 1, \dots, 9\}$
	If $x \in \frac{b_1}{10} + \frac{b_2}{10^2}$, $x = 0$. $b_1 b_2$ process terminate else let $I_2 = \cdots \ldots$
	Proceed similarly we get
	either $x = 0. b_1 b_2 \dots b_n$. Or we get a nested sequence of intervals $I_1 \square I_2 \square \dots \square \square I_n \dots$.
	s.t length of $I_n \to 0$ as $n \to \infty$
	By Nested Interval Theorem there exists unique element c in $\bigcap_{n=1}^{\infty} I_n$ x= c
iii.	Find a family of open intervals $G \equiv \{J_n : n \in N\}$ such that $(0, 2] \subseteq \bigcup_{n=1}^{\infty} J_n$, but
	there does not exist a finite subset $F = \{n_1, n_2, \dots, n_k\} \subseteq N$ such that (0, 2] is subset of $\bigcup_{n \in F} J_n$.

	Ans	Let $G = \{J_n = (\frac{1}{n}, 3) / n \in N\}$
		Part 1:
		$x \in A \text{ implies}$, since $x \neq 0$ by A P $\exists n_0 \in \mathbb{N}$ s.t. $n_0 > \frac{1}{r}$
		Hence $\in \mathcal{O}$
		$A \Box \bigcup_{l=1}^{\infty} (2 \text{ marks})$
		Part 2: TPT there does not exist a finite subset $F = \{n_1, n_2,, n_k\} \subseteq$ such that $(0, 2]$ is subset of \bigcup_{ϵ} . Suppose there exist a finite subset $F = \{n_1, n_2,, n_k\} \subseteq$ such that $(0, 2]$ is subset of \bigcup_{ϵ} . $A \square \bigcup_{l=1}^{k}$ where $l < 2,, N_k\} \subseteq$ such that $(0, 2]$ is subset of \bigcup_{ϵ} . $A \square \bigcup_{l=1}^{k}$ where $l < 2,, N_k\} \subseteq$ such that $(0, 2]$ is subset of \bigcup_{ϵ} . Hence $\frac{l}{l} > \cdots \dots > \frac{l}{l}$ $\frac{l}{l} \neq 0$, $h \equiv I \in$ s.t $0 < \frac{l}{l}$. x does not belong to $\bigcup_{i=1}^{k} J_{n_i}$ Contradiction(4 marks)
	iv.	Using Nested Interval Theorem prove that closed interval[0,1] is uncountable.
	Ans	Suppose that closed interval[0,1] is countable. We can enumerate I= [0,1] as{ $x_1, x_2, \dots, x_{n,\dots}$ } Select closed interval I_1 of I s.t x_1 does not belong to interval I_1 Select closed interval I_2 of I s.t x_2 does not belong to interval I_2 and so on Proceed similarly to get a nested sequence of intervals $I_1 \square I_2 \square \dots \square I_n \dots \square I_n$ s.t x_n does not belong to interval $I_n(4 \text{ marks})$ By Nested Interval Theorem there exists unique element c in $\bigcap_{n=1}^{\infty} I_n$ But $c \neq x_n$ for all n c does not belong to $\bigcap_{n=1}^{\infty} I_n$ contra(2 marks)
Q3 a	Attemp	t any ONE question from the following: (08)
		Let $f: [a, b] \to \mathbb{R}$ be a bounded function. Prove that f is R-integrable on $[a, b]$ iff for
А	i)	any $\in > 0$, there exists a partition P_{\in} of $[a, b]$ such that
		$U(f, P_{\epsilon}) - L(f, P_{\epsilon}) < \epsilon.$
		Proof: (\Rightarrow) Given <i>f</i> is <i>R</i> integrable on [<i>a</i> , <i>b</i>].
	A.p.c	T.P.T: $\forall \epsilon > 0$, $\exists a partition P_{\epsilon} of [a, b]$ such that, $U(f, P_{\epsilon}) - L(f, P_{\epsilon}) < \epsilon$.
	AU2	Let, $\epsilon > 0$ be any real number, as f is R integrable,
		$\therefore U(f) = L(f)$

	Where, $U(f) = \inf\{U(f, P): P \text{ is any partion of } [a, b]\}$		
	And $L(f) = \sup \{L(f, P): P \text{ is any partion of } [a, b]\}$		
	\therefore for given $\epsilon > 0, \exists$ a partition P_1 of $[a, b]$ such that,		
	$U(f) \le U(f, P_1) < U(f) + \frac{\epsilon}{2} \tag{1}$		
	Also, for given $\epsilon > 0$, \exists a partition P_2 of $[a, b]$ such that,		
	$L(f) - \frac{\epsilon}{2} < L(f, P_2) \le L(f)$		
	$\operatorname{or} - L(f) \le -L(f, P_2) < -L(f) + \frac{\epsilon}{2} $ (2)		
	from (1) and (2) $II(f) - L(f) < II(f, P_1) - L(f, P_2) < II(f) - L(f) + \epsilon$		
	$\therefore 0 \le U(f, P_1) - L(f, P_2) < \epsilon \tag{3}$		
	(:: U(f) = L(f))		
	Now taking $P_{\epsilon} = P_1 \cup P_2$,		
	$\therefore U(f, P_{\epsilon}) \le U(f, P_{1}) \& L(f, P_{\epsilon}) \ge L(f, P_{2}) (\because P_{1} \subseteq P_{\epsilon} \& P_{2} \subseteq P_{\epsilon})$ $\therefore U(f, P) = L(f, P) \le U(f, P) = L(f, P) \le \epsilon \text{by (3)}$		
	$\therefore U(f, P_{\epsilon}) - L(f, P_{\epsilon}) \le \epsilon$ $\therefore U(f, P_{\epsilon}) - L(f, P_{\epsilon}) < \epsilon$		
	(⇐) Given: $\forall \epsilon > 0$, \exists apartition P_{ϵ} of $[a, b]$ such that, $U(f, P_{\epsilon}) - L(f, P_{\epsilon}) < \epsilon$.		
	T.P.T: f is R integrable on $[a, b]$.		
	i.e. T.P.T: $L(f) = U(f)$		
	$\forall \epsilon > 0, \exists \text{apartition } P_{\epsilon} \text{ of } [a, b] \text{ such that, } U(f, P_{\epsilon}) - L(f, P_{\epsilon}) < \epsilon$ We know that $U(f) \leq U(f, P) \otimes L(f) > L(f, P)$		
	we know that, $U(f) \leq U(f, P_{\epsilon}) \otimes L(f) \geq L(f, P_{\epsilon})$ $: 0 \leq H(f) = I(f) \leq H(f, P) = I(f, P) \leq c(\cdots H(f) > I(f))$		
	$\therefore 0 \le U(f) - L(f) \le \epsilon \therefore U(f) = L(f)$		
ii	Let $f: [a, b] \to \mathbb{R}$ be a monotonic increasing function. Show that f is Riemann integrable on $[a, b]$.		
 Ans	Claim: if f is increasing function on [a,b] then f is R integrable.		
	Let $P=\{x0, x1, \dots, xn\}$ be a partition of [a,b] As f is increasing on $[x, yi]$ such that $Mi=f(x_1)$ and $mi=f(x_2)$		
	$1 \times 1 \times$		
	where $M_i = \sup\{f(x) x \in [x_{i-1}, x_i] \}$ & $m_i = \inf\{f(x) x \in [x_{i-1}, x_i] \}$ (2 marks)		
	$\mathbf{U}(\mathbf{D} \cap \mathbf{V}(\mathbf{D} \cap \mathbf{\nabla}^n) (\mathbf{M}) = \mathbf{U}(\mathbf{U} \cap \mathbf{U} \cap \mathbf{U}) = \mathbf{U}(\mathbf{U} \cap \mathbf{U}) = \mathbf{U}(\mathbf{U} \cap \mathbf{U}) = \mathbf{U}(\mathbf{U} \cap \mathbf{U})$		
	$U(P,I) - L(P,I) = \sum_{i=1}^{n} (Mi - mi)(xi - XI - 1) \le \sum_{i=1}^{n} (f(XI) - f(xi - 1)) P $ = (f(b)-f(a)) P		
	Select P such that $ P < \frac{\epsilon}{f(b)-f(a)+1}$		
	(2 marks)		

		Hence U(P,f)—L(P,f) $< \frac{\epsilon}{f(b)-f(a)+1}(f(b) - f(a)) < \epsilon$ (2 marks)	
b)	Atten	npt any TWO questions from the following:	
	i.	Let $f : [a, b] \to \mathbb{R}$ be a bounded function with $m = Inf(f)$ and M = Sup(f) on $[a, b]$. With usual notations, define $L(P, f)$ and $U(P, f)$ we partition of $[a, b]$. Hence prove that $m(b-a) \le L(P, f) \le U(P, f) \le M(b-a)$.	here <i>P</i> is a
	Ans	Let f be a bounded function on $[a,b]$. Let $P = \{x_0, x_1, \dots, x_n\}$ be a partition of $[a,b]$ As f is continuous by boundedness be a partition of $[a,b]$ Define i) upper sum ,ii) lower sum (3 marks)	
		let $M_i = \sup\{f(x) \mid x \in [x_{i-1}, x_i]\}$ & $m_i = \inf\{f(x) \mid x \in [x_{i-1}, x_i]\}$ $m \le m_i \le M \text{ for } i=1,2,3,n$ hence $m(b-a) \le L(P,f) \le U(P,f) \le M(b-a)$ (3 marks)	
	ii	Let $f: [a, b] \to \mathbb{R}$ be a bounded function if f is R-integrable on $[a, c]$ and $[a, b]$ and $\int_a^b f = \int_a^c f + \int_c^b f$	[b] then
	Ans	Given f is integrable on $[a, c]$ and $[c, b]$. for any $\in > 0 \exists$ a partition P_1 of $[a, c]$ such that $U(f, P_1) - L(f, P_1) < \in$ for any $\in > 0 \exists$ a partition P_2 of $[c, b]$ such that $U(f, P_2) - L(f, P_2) < \in$ since $U(f, P) = U(f, P_1) + U(f, P_2)$ and $L(f, P) = L(f, P_1) + L(f, P_2)$ Take $P = P_1 \cup P_2 \Longrightarrow U(f, P) \le U(f, P_1)$ and $L(f, P) \ge L(f, P_1)$ $\therefore U(f, P) - L(f, P) \le U(f, P_1) - L(f, P_1) < \in$ $\therefore f$ is R - integrable on $[a, b]$ for any $\in > 0 \exists$ partitions P_1 and P_2 of $[a, c]$ and $[c, b]$ then one can find a of $[a, b]$ such that $U(f, P) - L(f, P) < \in \Rightarrow f$ is R - integrable on $[a, b]$. Claim : $\int_a^b f = \int_a^c f + \int_c^b f$ LHS $= \int_a^b f = \int_c^b f \le U(f, P) < \epsilon + L(f, P) < \epsilon + L(f, P_1) + L(f, P_2) <$ $\int_c^b f$ therefore $\int_a^b f \le \int_a^c f + \int_c^b f$ Similarly one can show $\int_a^b f \ge \int_a^c f + \int_c^b f$	2 marks a partition 1 marks $\in + \int_a^c f +$ 2 marks 1 marks

		By stating properties of Riemann integrability justify which of the following functions
		are Riemann integrable ?
	iii.	i) $f(x) = e^{\sin x }$ on $[-\pi.\pi]$
		ii) $f(x) = 0ifx = 0$
		$=\frac{1}{n}if\frac{1}{n+1} < x \le \frac{1}{n}, n \in \mathbb{N}$
	Ans	
		1) e^x , $\sin x$, $ x $, x^2 all are continuous functions on \mathbb{R} and composition of
		continuous functions is continuous hence Riemann intrgrable .
		f has fintely many discontinuities hence is Riemann Integarable.
	iv.	Using Riemann Criterion, show that the function $: [2, 3] \rightarrow \mathbb{R}$ defined by $f(x) = x + 3$ is Riemann integrable.
	Ans	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \frac{I(D_i f)}{I(D_i f)} = I(D_i f) = f$
		For any $\epsilon > 0$ Claim: $U(P, f) - L(P, f) < \epsilon$
		By Archimedean property, $\exists n \in \mathbb{N}$ such that $n > 1/_{\in} \implies 1/_n < \in$
		Let $P = \{0, \frac{1}{n}, \frac{2}{n}, \dots, 1\}$ be a partition of [0, 1].
		$x_1 = x_2 = \frac{1}{2}$ and $x_2 = \frac{k}{2}$
		x_k $x_{k-1} = 7n$ and $x_k = 7n$ Since f is increasing hence $M_1 = x_1 + 3$ and $m_2 = x_1 + 3$ (3 marks)
		Since j is increasing, hence $m_k = x_k + 5$ and $m_k = x_{k-1} + 5$ (5 marks)
		$U(P,f) - L(P,f) = \sum_{k=1}^{n} M_{k}(x_{k} - x_{k-1}) - \sum_{k=1}^{n} m_{k}(x_{k} - x_{k-1}) = \sum_{k=1}^{n} (x_{k} - x_{k-1})(x_{k} - x_{k-1})$
		$= \sum_{k=1}^{n} \frac{1}{n} \frac{1}{n} < \frac{1}{n^2} \times n < \frac{1}{n} < \epsilon $ (3 marks)
		$\therefore f$ is R-integrable.
Q4.	Attem	pt any ONE question from the following: (08)
-	-	
a)		If the function $f:[a,b] \to \mathbb{R}$ is a continuous function and let $F(x) = \int^x f(t) dt \forall x \in \mathbb{R}$
,	i.	$[a, b]$, then prove that $F(x)$ is differentiable and $F'(x) = f(x) \forall x \in (a, b)$.
	Ans	Let $x \in (p - \delta, p + \delta)$
		Case 1: $x \in (p - \delta, p)$. $F(x) - F(p) = -\int_p^x f(t) dt$.
		$\left \frac{f(x) - f(p)}{x - p} - f(p)\right = \left \frac{1}{p - x} \int_{x}^{p} f(t) - f(p) dt\right \le \left \frac{1}{p - x}\right \left \int_{x}^{p} f(t) - f(p) dt\right \le \frac{1}{p - x} \left \int_{x}^{p} $
		$\frac{1}{p-x} J_x \frac{1}{2} u \leq \epsilon (4 \text{ marks})$

		Case 2: $x \in (p, p + \delta)$. $F(x) - F(p) = \int_p^x f(t) dt$.
		$\left \frac{f(x)-F(p)}{x-p} - f(p)\right = \left \frac{1}{x-p}\int_{p}^{x} f(t) - f(p) dt\right \le \left \frac{1}{x-p}\right \left \int_{p}^{x} f(t) - f(p) dt\right \le \frac{1}{x-p}\left \int_{p}^{x}\frac{e}{h}dt \le \epsilon \text{ (4 marks)}\right $
		$x-p^{op} 2$ If a function $f:[a,b] \to \mathbb{R}$ is <i>R</i> -integrable on $[a,b]$ and function $F:[a,b] \to \mathbb{R}$ is
	ii.	defined by $F(x) = \int_{a}^{x} f(t)dt \ \forall x \in [a, b]$ then prove that F is continuous on $[a, b]$.
	Ans	Case 1: $x \ge p$. $ F(x) - F(p) = \left \int_{n}^{x} f(t) dt \right \le \int_{n}^{x} f(t) dt \le M \int_{n}^{x} dt \le \epsilon$ (4 marks)
		Case 2: $x < p$. $ F(x) - F(p) = \left -\int_x^p f(t)dt \right \le \int_x^p f(t) dt \le M \int_x^p dt \le \epsilon$ (4 marks)
Q4.	Attem	pt any TWO questions from the following: (12)
b)	i.	State and prove First Mean Value theorem of integral calculus.
	Ans	Statement: Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Then show that $\exists c \in [a,b]$ such that $\int_a^b f(x) dx = f(c)(b-a)$. (2 marks)
		$m(b-a) \le \int_{a}^{b} f(x) dx \le M(b-a)$
		$m \leq \frac{1}{1-1} \int_{a}^{b} f(x) dx \leq M$ (2 marks)
		f is continuous hence attains bounds.
		By intermedite value property f takes a value between m and M. So $f(c) = \frac{1}{2} \int_{-\infty}^{b} f(c) dc$
		$\frac{1}{b-a}\int_a^b f(x)dx$ (2 marks)
	ii.	If $\int_{a}^{\infty} f(x) dx$ converges then show that $\int_{a}^{\infty} f(x) dx$ converges.
		$\left \int_{x}^{y} f(t) dt \right < \epsilon \forall x, y \ge x_0$
	Ans	$\left \int_{x}^{y} f(t)dt\right \leq \int_{x}^{y} f(t) dt \leq \left \int_{x}^{y} f(t) dt\right < \epsilon \forall x, y \geq x_{0}$
	iii.	Prove that $\int_0^1 x^{m-1} (1-x)^{n-1} dx$ converges if and only if <i>m</i> and <i>n</i> are both positive.
		For $m \ge 0$, $n \ge 0$ the integral is proper. When $m \le 1$, infinite discontinuity at 0 and when $m \le 1$, infinite discontinuity at 1
		when $n \ge 1$, infinite discontinuity at 1. $\int_{-1}^{1} x^{m-1} (1-x)^{n-1} dx = \int_{-1}^{1/2} x^{m-1} (1-x)^{n-1} dx + \int_{-1}^{1} x^{m-1} (1-x)^{n-1} dx - L_{1-1} dx$
	Ans	For I ₁ , $f(x) = \frac{(1-x)^{n-1}}{x^{1-m}}$, $g(x) = \frac{1}{x^{1-m}}$. $\lim_{x \to 0} \frac{f(x)}{x^{n-1}} = 1$. By comparison test
		$\int_{0}^{\frac{1}{2}} f(x) dx, \int_{0}^{\frac{1}{2}} g(x) dx$ converge and diverge together.
		$\int_{0}^{\frac{1}{2}} g(x) dx = \int_{0}^{\frac{1}{2}} \frac{1}{x^{1-m}} dx \text{ converges iff } 1 - m < 1 \text{ i. } e.m > 0. (3 \text{ marks})$

		For $I_2(x) = \frac{x^{m-1}}{(1-x)^{1-n}} g(x) = \frac{1}{(1-x)^{1-n}}$. Same approach as above. (3 marks)
	iv.	Sketch the region of integration and calculate the integral $\int_0^1 \int_{4x}^4 x^2 dy dx$.
	Ans	
		Sketching of area (3 marks) Coloulation $\int_{-1}^{1} \int_{-1}^{4} x^2 dx dx = 1/2$ (3 marks)
		Calculation $J_0 J_{4x} x uyux = 173. (3 marks)$
Q5.	Attem	pt any FOUR questions from the following: (20)
a)	Show	that 0.21 and 0.2099 represent the same rational number.
Ans	0.21=	$\frac{2}{10} + \frac{1}{100} = \frac{21}{100}$ (2 marks)
	0.2099	$\Theta \dots \dots = \frac{2}{10} + \frac{0}{100} + \frac{9}{10^3} \left(1 + \frac{1}{10} + \dots \right)$
	$= \frac{20}{20}$	$+\frac{9}{10}\lim_{n\to\infty} \left(\frac{1-\frac{1}{10^{n-2}}}{10^{n-2}}\right) = =\frac{20}{10^{n-2}} + \frac{1}{10^{n-2}}(1-0) = \frac{21}{10^{n-2}}(3 \text{ marks})$
	100 2	$10^{3} 10^{3} 10^{1} $
<i>b</i>)	Show	that $f(x) = x^6 - 4x^4 - x + l$ has a zero in each of the intervals
A ma	(-1,0	(0, 1) and $(1, 2)$.
Alls	Since	T is continuous on IR, by I VP since (2 marks)
	f(-1) f(-1	(0) < 0, f has zero in (-1, 0)
	f(0) f(1) f(1)	1 < 0, f has zero in (0, 1) 2) < 0, f has zero in (1, 2)(3 marks)
C)	Let P	= { 2, 2.1, 2.3, 2.5, 2.9, 3 } be a partition of [2, 3] and $f : [2, 3] \rightarrow \mathbb{R}$ is a function such
0)	that <i>f</i>	$(x) = x + 1$ then verify that $L(P, f) \leq U(P, f)$
Ans	Soluti	on not required.
	Show	that the function $f : [1, 3] \rightarrow \mathbb{R}$ is Riemann integrable, where
d)		$f(x) = 5 for \ 1 \le x < 2$
	=	$= -9 for 2 \le x \le 3$

Ans	Divide the interval [1, 3] into 2 <i>n</i> equal parts each of length $\frac{3-1}{2n} = \frac{1}{n}$	
	Let $P = \left\{1, 1 + \frac{1}{n}, 1 + \frac{2}{n}, \dots, 1 + \frac{n-1}{n}, 2, 2 + \frac{1}{n}, 2 + \frac{2}{n}, \dots, 2 + \frac{n-1}{n}, 3\right\}$	
	Let m_i and M_i , $i = 1$ to n be infimum and supremum of f respectively on	$\left[1, 1 + \frac{1}{n}\right]$
	$\left[1 + \frac{1}{n}, 1 + \frac{2}{n}\right], \dots, \left[1 + \frac{n-1}{n}, 2\right]$	
	$\implies m_i = M_i = 5$, $i = 1$ to $n - 1$ and $m_n = -9$, $M_n = 5$	1 marks
	Let m'_i and M'_i , $i = 1$ to n be infimum and supremum of f respectively of	$\operatorname{on}\left[2,2+\frac{1}{n}\right],$
	$\left[2+\frac{1}{n},2+\frac{2}{n}\right],\cdots,\left[2+\frac{n-1}{n},3\right]$	
	$\Rightarrow m'_i = M'_i = -9$, $i = 1$ to n	1 marks
	$L(P,f) = \sum_{k=1}^{n} m_k (x_k - x_{k-1}) + \sum_{k=1}^{n} m_k (x_k - x_{k-1}) = \frac{1}{n} [5 + 5 + \dots + (-9)] + \frac{1}{n} [-9]$	9-99]
	$=\frac{5(n-1)}{n} + \frac{(-9)(n+1)}{n} = -4 - \frac{14}{n} \Longrightarrow L(f) = -4$	marks
	$U(P,f) = \sum_{k=1}^{n} M_{k} (x_{k} - x_{k-1}) + \sum_{k=1}^{n} M_{k} (x_$	$\mathcal{I}_{k}(x_{k}-x_{k-1})$
	$=\frac{1}{n}[5+5+\dots+5]+\frac{1}{n}[-9-9-\dots-9]$	
	$=\frac{5n}{n} + \frac{(-9)n}{n} = -4 \Longrightarrow U(f) = -4 \qquad 1 \text{ m}$	narks
	$\therefore L(f) = U(f) \Longrightarrow f \text{ is R-integrable.}$	1 marks
e)	Prove that $\sqrt{\pi} \Gamma(2m) = 2^{2m-1} \Gamma(m) \Gamma\left(m + \frac{1}{2}\right)$.	
Ans	$\beta(m,m) = \frac{2}{2^{2m-1}} \int_0^{\frac{\pi}{2}} (\sin 2\theta)^{2m-1} d\theta$	
	Substituting $t = 2\theta$. $\beta(m, m) = \frac{2}{2^{2m-1}} \int_0^{\pi} \frac{(\sin t)^{2m-1} dt}{2} = \frac{1}{2^{2m-1}} \left[\int_0^{\frac{\pi}{2}} (\sin t)^{2m-1} dt \right]$	dt + dt +
	$\int_{0}^{\frac{\pi}{2}} (\sin(\pi - t)^{2m-1} dt] = \frac{2}{2^{2m-1}} \int_{0}^{\frac{\pi}{2}} (\sin t)^{2m-1} dt \ (2 \text{ marks})$	
	Also $\beta\left(m, \frac{1}{2}\right) = \int_{0}^{\frac{\pi}{2}} (\sin t)^{2m-1} dt. (1 \text{ marks})$	
	Combining above and using beta gamma relationship get the result.(2 m	arks)

f)	Find the volume of the solid that lies under the hyperbolic paraboloid $z = 4 + x^2 - y^2$ and above the square $R = [-1,1] X [0,2]$ using Fubini's theorem.
Ans	Volume= $\int_{-1}^{1} \int_{0}^{2} (4 - x^2 - y^2) dy dx = 12.$