(3 Hours)

[Total Marks: 100]

Note: (i) All questions are compulsory.

(ii) Figures to the right indicate marks for respective parts.

Q.1	Cho	ose correct alternative in each	n of t	he following (20)	
i.	How	many permutations of C. ar	evn	ressed as composite of disjoint 2-cycles?	
<u> </u>	(a)	12	(b)		
	(c)	3	(d)	10	
		(c) 3	1 (-)	T->*	
ii.		ature of a cycle of length r is			
		$(-1)^{(r)}$	(b)	r	
		$(-1)^{(r+1)}$	_	None of these	
		$(c) (-1)^{(r+1)}$	1 2-7		
iii.	 	number of elements in A_6 is			
	(a)	6	(b)	720	
	(c)	360	(d)	26	
	Ans	(c) 360	<u> </u>	1 =	
iv.			. 727	,, simple formula for (a_n) is	
	(a)	$3^{n} + 2$	(b)	3^n-2	
	(c)	$-3^{n}+4$	(d)	n^2-2	
	Ans	(b) $3^n - 2$			
ν.			ın sur	jective function $f: X \to Y$ then	
	(a)	X = Y	(b)	$ X \leq Y $	
	(c)	$ X \geq Y $	(d)	None of these	
	Ans	(c) $ X \ge Y $			
vi.	How many ways are there to pick a man and a woman who are not husband				
	and v	vife from a group of n marrie	d cou	ıples?	
	(a)	n!	(b)	n(n-1)	
		n+(n-1)	(d)	None of these	
	Ans	(b) $n(n-1)$			
vii.	Let $S(n, k)$ denote the Stirling number of second kind on n-set into k-disjoint				
_	1	mpty unordered subsets, then	S(n,	1) is	
	(a)	1	(b)	0	
	(c)	n	(d)	None of these	
•••	Ans	(a) 1			
viii.	How	many students must be in a c	lass t	o guarantee that at least two students	
	necen	we the same score on the final	exar	n, if the exam is graded on a scale from	
		00 points?	71.5	100	
i	(a)	101	(b)	102	

	(c)	100 (d) None of these		
	Ans	(d) None of these		
ix.	17 s	tudents are present in a class. In how many ways, can they be seated callar tables having of 8 and 9 chairs?	on 2	
	(a)	$\binom{17}{8}$ 9! 8! $\binom{17}{8}$ 8! 7!		
	(c)	9! 8! (d) None of these		
	Ans	(b) $\binom{17}{8}$ 8! 7!		
<i>x</i> .	If p	s a prime and $n > 0$, then		
	(a)	$\phi(p^n) = p^n \left(1 + \frac{1}{p}\right) \qquad \text{(b)} \qquad \phi(p^n) = p \left(1 - \frac{1}{p}\right)$ $\phi(p^n) = p^n \left(1 - \frac{1}{p}\right) \qquad \text{(d)} \text{None of these}$ $\text{(b) } \phi(p^n) = p^n \left(1 - \frac{1}{p}\right)$		
	(c)	$\phi(p^n) = p^n \left(1 - \frac{1}{n}\right)$ (d) None of these	·	
	Ans	$(b) \phi(p^n) = p^n \left(1 - \frac{1}{n}\right)$		
Q2.		npt any ONE question from the following: (0)	8)	
a)	i.	Prove that for $n > 1$, the number of even permutations is equal to the number of odd permutations, each set having $\frac{n!}{2}$ elements.		
		Let S_n denotes set of all permutations of set $S = \{1,2,,n\}$. $\therefore S_n = n!$ Since $I_n(identity\ permutation) \in S_n$ and it is even. Also for > 1 , $(1,2) \in S_n$ and it is odd. $\therefore S_n$ contains even as well as odd permutations. Let $k_1 = \text{odd}$ permutations in S_n and $k_2 = \text{even}$ permutations in S_n . Then $k_1 + k_2 = n!$ (1) As $(1,2) \in S_n$, for every even permutation α , we have corresponding odd permutation $\alpha(1,2)$. Thus there are at least as many odd permutation as even permutations. $\therefore k_1 \ge k_2$ (2) On other hand, for every odd permutation , we have corresponding even permutation $\beta(1,2)$. Thus there are at least as many even permutation as odd permutations. $\therefore k_1 \le k_2$ (3) $\therefore k_1 \le k_2$ (3) $\therefore k_1 = k_2$ (4)	1 1 1	

	ii.	Define Linear Homogeneous recurrence relation of degree n.	
		Show that if the characteristic equation $x^2 - a_1x - a_2 = 0$ of the	
		recurrence relation $h_n = a_1 h_{n-1} + a_2 h_{n-2}$ has a single non-zero re	iots
		q_1 then $h_n = c_1 q_1^n + c_2 n q_1^n$ is the general solution of the recurrence	
		relation $h_n = a_1 h_{n-1} + a_2 h_{n-2}$.	
	Ans	Definition: (2 marks)	2
		Given recurrence relation $h_n = a_1 h_{n-1} + a_2 h_{n-2}$ (1)	
		Its characteristic equation $x^2 - a_1 x - a_2 = 0$ (2)	2
		As q_1 is root of (2) then ${q_1}^2 - a_1 q_1 - a_2 = 0$	
		$\Rightarrow q_1^2 = a_1 q_1 + a_2$	
		$h_n = c_1 q_1^n + c_2 n q_1^n$	
		$=c_1q_1^{n-2}.q_1^{2}+c_2nq_1^{n-2}.q_1^{2}$	
		$= c_1 q_1^{n-2} \cdot (a_1 q_1 + a_2) + c_2 n q_1^{n-2} \cdot (a_1 q_1 + a_2)$	
		$= c_1 h_{n-1} + c_2 h_{n-2} \qquad \dots (3)$	4
		Equation (3) satisfies the equation (1).	
			⊣ -
Q.2	Atter	npt any TWO questions from the following:	(12)
		, -	\ -/
\overline{b}	i. —	. (1 2 3 4 5 6 7 8 9)	
		For the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 4 & 8 & 1 & 9 & 3 & 7 & 6 & 2 \end{pmatrix}$	
		·	
		(I) Express σ in one row notation. (II) Find the inverse of σ .	
		(III) Express σ as a product of transposition and find the sign of σ .	
	Ans	(2M+2M+2M)	
		$(I) \sigma = (15924)(386)$	2
		$(II)_{\sigma^{-1}} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{pmatrix}$	~
		(II) $\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 9 & 6 & 2 & 1 & 8 & 7 & 3 & 5 \end{pmatrix}$ (III) $\sigma = (14)(12)(19)(15)(36)(38)$	2
		Or	2
		$\sigma = (15)(59)(92)(24)(38)(86)$	
ļ	 	$Sign(\sigma) = 1$	[
	ii.	Solve the following recurrence relations using iteration method:	
		(a) $c_n = (-1.1)c_{n-1}, c_1 = 5$	ļ
_		(b) $d_n = d_{n-1} - 2$, $d_1 = 0$ (a) $c_n = 5(-1.1)^{n-1}$	
. [Ans		3
		(b) $d_n = -2(n-1)$	$\begin{vmatrix} 3 \end{vmatrix}$
	iii.	Define Signature of permutation.	\perp
		Prove that, if $\alpha, \beta \in S_n$ then $sgn(\alpha\beta) = sgn(\alpha) \times sgn(\beta)$.	
		$= sgn(a) \times sgn(p).$	İ

	Ans	Definition: $sgn(\alpha) = \prod_{1 \le i < j \le n} \frac{\alpha(i) - \alpha(j)}{i - j}$	2
		Let $\alpha, \beta, \in S_n$,	
]	By def	
		$sgn(\alpha\beta) = \prod_{1 \le i < j \le n} \frac{(\alpha\beta)(i) - (\alpha\beta)(j)}{i - j}$	
		$= \prod_{1 \le i < j \le n} \frac{(\alpha\beta)(i) - (\alpha\beta)(j)}{(\beta)(i) - (\beta)(j)} \times \frac{(\beta)(i) - (\beta)(j)}{i - j}$ $= \prod_{1 \le i < j \le n} \frac{\alpha(\beta(i)) - \alpha(\beta(j))}{\beta(i) - \beta(j)} \times \prod_{1 \le i < j \le n} \frac{(\beta)(i) - (\beta)(j)}{i - j}$	2
		Let $\beta(i) = a$, $\beta(j) = b$ = $\prod_{1 \le i < j \le n} \frac{\alpha(a) - \alpha(b)}{a - b} \times sgn(\beta)$	
		$= \prod_{1 \le i < j \le n} \frac{1}{\alpha - b} \times syn(\beta)$ $= sgn(\alpha) \times shn(\beta)$	2
	iv.	Solve the linear homogeneous recurrence relation $h_n = h_{n-1} + h_{n-1}$ $n \ge 3$ $h_1 = 1$, $h_2 = 1$ by using characteristic equation.	Z,
	Ans	$n \ge 3 n_1 = 1, n_2 = 1$ by using characteristic equation.	6
	Alls	$h_n = \left(\frac{1}{\sqrt{5}}\right) \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(-\frac{1}{\sqrt{5}}\right) \left(\frac{1-\sqrt{5}}{2}\right)^n$	
_			
Q3.	Atte	mpt any ONE question from the following:	(08)
a)	i.	Define finite set. Show that in any set X of people there are two mer of X who have the same number of friends in X . (It is assumed that at least 2, and if x is a friend of y then y is a friend of x .)	nbers X is
	Ans	$1 - \frac{1}{2}$ $\frac{1}{2}$	T^{-}
	Alis	$n \in \mathbb{N}$. i.e. if there is a bijection $f: A \to \mathbb{N}_n$ for some $n \in \mathbb{N}$.	2
		Let $ X = m$. Define a function f on X , such that $f(x) =$ number of friends of x .	2
		Then $f(x)$ values are 0, 1, 2,, $m-1$.	
		If $f(x) = 0$ for some x , then $f(x)$ cannot be $m - 1$ for any $x \in X$. Thus, f is not injective. Therefore, there must be a and b , such that $f(a) = f(b)$.	2
		Similarly, If $f(x) = m - 1$ for some x, then $f(x)$ cannot be 0 for any	
		$x \in X$. And again we get $f(a) = f(b)$ for some a and b in X. State the Pigeonhole Principle. Show that in any set of 6 people the	2

	· ·	
	Fix any person from the group of 6 people. Call him X .	
	Form two pigeonholes, F and S . F will contain friends of X and S will contain those, who are strangers to X .	2
	By strong form of Pigeonhole Principle, one of these pigeonholes must contain at least three people.	
	Suppose F contains (at least) three people, B , C , D . If any two of these are friends of each other, then we get three who are mutual friends. If no two of B , C and D are friends of each other, then we get three who are mutual strangers.	3
	Similarly, it can be shown if there are (at least) three people in S .	1
Atter	npt any TWO questions from the following:	(12)
i	Show that interval [0,1] is uncountable.	
Ans	Consider a set $A = \{1/n, n \in \mathbb{N} \}$	2
	N is infinite so A is also infinite	2
	Therefore, A is infinite, then [0, 1] is infinite.	$\frac{1}{2}$
<u> </u>	Using contradiction prove that $[0,1]$ is uncountable.	
ii.	actually partitioning.	
Ans	Let $k = 1$. Then $\{\{a, b, c, d, e\}\}\$ is the only partition possible. Hence, $S(5, 1) = 1$.	2
	Let $k=2$.	
	(a) (a) (a) b a d(b)	i
	$\{\{a,b\}, \{c,d,e\}\}, \{\{a,c\}\}, \{b,a,e\}\}, \{\{a,a\}, \{b,c,e\}\}, \{\{a,c\}\}, \{\{b,c\}, \{a,d,e\}\}, \{\{b,d\}, \{a,c,e\}\}, \{\{b,e\}, \{a,c,d\}\}, \{\{c,d\}, \{a,b,e\}\}, \{\{c,e\}, \{a,b,d\}\}, \{\{d,e\}, \{a,b,c\}\} $ are the only partitions.	3
	i. Ans	must contain at least three people. Suppose F contains (at least) three people, B , C , D . If any two of these are friends of each other, then we get three who are mutual friends. If no two of B , C and D are friends of each other, then we get three who are mutual strangers. Similarly, it can be shown if there are (at least) three people in S . Attempt any TWO questions from the following: i. Show that interval $[0,1]$ is uncountable. Ans Consider a set $A = \{1/n, n \in \mathbb{N}\}$ \mathbb{N} is infinite so A is also infinite Therefore, A is infinite, then $[0,1]$ is uncountable. ii. Find Stirling number of second kind $S(n,k)$ for $n=5$ and $k=1,2$ by actually partitioning. Ans Let $k=1$. Then $\{\{a,b,c,d,e\}\}$ is the only partition possible. Hence, $S(5,1)=1$. Let $k=2$. Then, $\{\{a\},\{b,c,d,e\}\},\{\{b\},\{a,c,d,e\}\},\{\{c\},\{a,b\},c,e\}\},\{\{d\},\{a,c\},\{d,b\},\{c,d,e\}\},\{\{a,b\},\{c,d,e\}\},\{\{a,c\}\},\{b,d,e\}\},\{\{a,d\},\{a,c,e\}\},\{\{a,e\},\{a,c\},\{a,b\},\{a,c\},\{$

		Hence, $S(5, 2) = 15$.	
	iii.	Prove by mathematical induction $S(n, n-1) = {}^{n}C_{2}$.	
	Ans	P(1) is true, P(2) is true Assume the result is true for p(m) Hence prove p(m+1)	2 2 2
	iv.	In how many ways can we draw (a) a heart and a spade (b) a king and an ace from an ordinary deck of 52 playing cards?	<u>].</u>
	Ans		3 3
Q4.	Atte	mpt any ONE question from the following:	(08)
a)	i.	State and prove The Multinomial Theorem.	
	Ans	The Multinomial Theorem: Let n be a non-negative integer. Then: $ (x_1 + x_2 + \dots + x_r)^n = \\ \sum_{\substack{n_1 + n_2 + \dots + n_r = n \\ n_1, n_2, \dots, n_k (\geq 0)}} \binom{n}{n_1, n_2, \dots, n_r} x_1^{n_1} x_2^{n_2} \dots x_k^{n_k}. $ Proof: We write $(x_1 + x_2 + \dots + x_r)^n$ as a product of n factors, each equal to $(x_1 + x_2 + \dots + x_r)$. We expand this product using the distributive law and collect like terms. For each of the n factors we choose one of the r numbers $ x_1, x_2, \dots, x_r $ and form their product. There are r^n terms that result in this way, and each can be arranged in the form $x_1^{n_1} x_2^{n_2} \dots x_k^{n_k}$, where n_1, n_2, \dots, n_k are non-negative integers whose sum is n .	2
		We obtain the term $x_1^{n_1}x_2^{n_2} \dots x_k^{n_k}$, by choosing x_1 from the n_1 of the n factors, x_2 from the n_2 of the remaining $n-n_1$ factors,, x_r from n_r factors $n-n_1-n_2-\dots-n_r$ i.e. n_r factors. Thus, by the multiplication principle, the number of times the term $x_1^{n_1}x_2^{n_2} \dots x_k^{n_k}$ occurs is given by	

	_
-	1
- 1	.]

		$ \binom{n}{n_1} \binom{n-n_1}{n_2} \dots \binom{n-n_1-n_2-\dots-n_{r-1}}{n_r} $ which is equal to $ \binom{n-n_1}{n_1,n_2,\dots,n_k} = \frac{n!}{n_1! n_2! \dots n_r!}. $	
		Hence, the sum of the r^n terms is $\sum_{\substack{n_1+n_2+\cdots+n_r=n\\n_1,n_2,\dots,n_k (\geq 0)}} \binom{n}{n_1,n_2,\dots,n_r} x_1^{n_1} x_2^{n_2} \dots x_k^{n_k}.$	
		Thus, $(x_1 + x_2 + \dots + x_r)^n = \sum_{\substack{n_1 + n_2 + \dots + n_r = n \\ n_1, n_2, \dots, n_k (\ge 0)}} {n \choose n_1, n_2, \dots, n_r} x_1^{n_1} x_2^{n_2} \dots x_k^{n_k}.$	6_
	ii.	For Euler's ϕ function prove that:	
		If $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}$ is the prime factorization of n , then,	
		$\phi(n) = n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \dots \left(1 - \frac{1}{p_t}\right).$	
	Ans	Let A_i denote the subset of \mathbb{N}_n which consists of the multiples of $p_j (1 \le j \le t)$. Then $\phi(n) = n - A_1 \cup A_2 \cup \ldots \cup A_t $	
		$= n - \left[\sum_{i=1}^{i=t} A_i - \sum_{1 \le i < j \le t} A_i \cap A_j + \sum_{1 \le i < j < k \le t} A_i \cap A_j \cap A_k - \dots \right]$	2
		$+(-1)^{t+1} \bigcap_{i=1}^{t} A_i]$	
		$= n - \sum_{i=1}^{i=t} A_i + \sum_{1 \le i < j \le t} A_i \cap A_j - \sum_{1 \le i < j < k \le t} A_i \cap A_j \cap A_k - \dots$	
		$ \begin{vmatrix} +(-1)^t \bigcap_{i=1}^t A_i \\ = n - \alpha_i + \alpha_2 - \dots + (-1)^t \alpha_t \end{vmatrix} $	
		Where α_i is the sum of the cardinalities of the intersections of $A_1, A_2,, A_n$ taken i at a time. The intersection $A_{j1} \cap A_{j2} \cap \cap$	2
		A_{ii} contains the multiples of $p = p_{ji} \times p_{j2} \times \ldots \times p_{ji}$ in \mathbb{N}_n	
		and these are just the integers, $p, 2p, 3p,, \left(\frac{n}{p}\right)p$.	
		: the cardinality of this intersection is $\frac{n}{p}$, and α_i is the sum of all	
		terms of type, $\frac{n}{p} = n \left(\frac{1}{P_{ji}} \right) \left(\frac{1}{P_{j2}} \right) \cdot \cdot \cdot \cdot \left(\frac{1}{P_{ji}} \right)$.	
		$+\cdots\dots+(-1)^t n\left(\frac{1}{P_1P_2P_3\dots P_t}\right)$	
		$= n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right) \dots \left(1 - \frac{1}{p_t}\right)$ $\therefore \phi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right) \dots \left(1 - \frac{1}{p_t}\right).$	
		$\varphi(n) = n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_t}\right)$	

1 .

Q4.	Atten	npt any TWO questions from the following:	(12)
b)	i.	Prove by giving a Combinatorial argument: $\sum_{k=0}^{n} {n \choose k} = 2^n$.	
	Ans	First we will show that the number of subsets of a n set is 2^n . Let $S = \{x_1, x_2,, x_n\}$ be any n -set and A be any subset of S . Now, The element x_1 has two choices, $x_1 \in A$ or $x_1 \notin A$. Similarly the element x_2 has two choices, $x_2 \in A$ or $x_2 \notin A$. Continuing this way, we can say that every element of S has two choices. Depending upon these choices, different subsets are formed. Hence by the Multiplication Principle, the number of subsets of S are $2 \times 2 \times n$ times $= 2^n (*)$ Now, consider the L.H.S. of $\sum_{k=0}^{n} \binom{n}{k} = 2^n$. A subset of S can be of size S of size S of size S is S of size S	3
		The number of subsets of S of size n is $\binom{n}{n}$. Hence, by the Addition Principle, the total number of subsets of S is $\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} \dots \binom{**}{n}$ By from $(*)$ and $(**)$ we get, $2^n = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = \binom{n}{n}$	2
		By from (*) and (*) we get, $z = \binom{n}{0} + \binom{n}{1} + \binom{n}{2}$.	1
	ii.	How many 8 letter words can by constructed by using the 26 letters the English alphabets if each word can contain 3, 4 or 5 vowels? It understood that there is no restriction on the number of times a letter be used in constructing a word.	is
	Ans	t c 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2
		and then the other 5 positions are taken by the consonants. There are total 5 vowels and 21 consonants in the alphabets. Since the	

	\
\triangle	. }
\Box	ر

}			
		repetition of letters is allowed, the 3 places of vowels can be filled in 5^3 ways and 5 places of consonants are filled in 21^5 .	2
	1	So, the total number of words with 3 vowels is $\binom{8}{3}$ 5 ³ 21 ⁵ . In a similar way, we can see that the number of words with 4	
		vowels is $\binom{8}{4}$ 5 ⁴ 21 ⁴ and the number of words with 5 vowels is	
		$\binom{8}{5}5^521^3$.	
		The total number of words of the required type is $\binom{8}{3} 5^3 21^5 + \binom{8}{3} 5^5 21^5 + \binom{8}{3} 5^5 21^5 + \binom{8}{3} 5^5 21^5 + \binom{8}{3} 5^5 21^5 +$	2
		$\binom{8}{4}5^421^4 + \binom{8}{5}5^521^3$.	
	iii.	Find the number of positive integers from 1 to 600 (both inclusive) which are not divisible by 2, 3 and 5.	
	Ans	Let $A = \text{set of all numbers divisible by 2}$. B = set of all numbers divisible by 3.	
		C = set of all numbers divisible by J.	
		$ A = \left\lfloor \frac{600}{2} \right\rfloor = 300$	
		$ B = \left[\frac{600}{3}\right] = 200$	2
		$ C = \left \frac{600}{5} \right = 120$	
		$ A \cap B = \left \frac{600}{\text{LCM (2,3)}} \right = \left \frac{600}{6} \right = 100$	
		$ B \cap C = \left \frac{600}{\text{LCM (3,5)}} \right = \left \frac{600}{15} \right = 40$	2
		$ A \cap C = \left \frac{600}{\text{LCM}(2.5)} \right = \left \frac{600}{10} \right = 60$	
		$ A \cap B \cap C = \left \frac{600}{LCM (2,3,5)} \right = \left \frac{600}{30} \right = 20$ $\therefore \text{ By Inclusion Exclusion principle, the number of positive integer}$ $\therefore \text{ By Inclusion Exclusion principle, the number of positive integer}$	s
		from 1 to 600 (both inclusive) which are division	
		$ A \cup B \cup C $ = $ A + B + C - A \cap B - B \cap C - A \cap C + A \cap B \cap C $ = $300 + 200 + 120 - 100 - 40 - 60 + 20$	
		-440	
		: numbers not divisible by 2, 3 and 5 are	
		$ = 600 - A \cup B \cup C = 600 - 440 $	
		= 160 ∴ 160 Numbers are not divisible by 2, 3 and 5.	
1		TOO LAMING ALL	

(0)

iv.	(a) Show that $D_n = nD_{n-1} + (-1)^n$, $n \ge 2$. (b) In how many ways can the integers 0, 1, 2,, 9 be permutated so that exactly 4 of the integers are in natural position?	,
Ans	(a) We have, LHS= D_{k+1} = $n! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^{n-1}}{(n-1)!} + \frac{(-1)^n}{n!}\right)$ = $n! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^{n-1}}{(n-1)!}\right) + n! \frac{(-1)^n}{n!}$ = $n(n-1)! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^{n-1}}{(n-1)!}\right) + (-1)^n$ = $nD_{n-1} + (-1)^n$ = RHS $\therefore D_n = nD_{n-1} + (-1)^n, n \ge 2$ (b) Out of the 9 integers any 4 can be selected by $C(9, 4)$ ways. These 4 integers can be arranged in natural position in only 1 way. The remaining 5 integers should be deranged. This can be done in D_5 ways. \therefore by multiplication principle, the required number of permutations is $C(9, 4)D_5 = \frac{9!}{4!5!} \times 5! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!}\right) = 126 \times 44 = 5544$ ways.	3
		(20)
a) S	Attempt any FOUR questions from the following: Show that the number of elements in S_n is $(n!)$. List all the elements in S_n	
	Let $S = \{1,2,,n\}$ and each permutation is bijection from S to S. A similar image of 1 to n elements can be selected in following ways 1^{st} element imagen ways 2^{nd} element imagen-1 ways n^{th} element image1 way Total ways=1 × 2 × × $n = n!$ Elements of S_3 $P_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$ $P_2 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ $P_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ $P_4 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$ $P_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ $P_6 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$	2
	Prove that $b_n < \left(\frac{5}{2}\right)^n$ for the recurrence relation $b_n = b_{n-1} + 2b_{n-2}$,	

-		
Ans	$P(n): b_n < \left(\frac{5}{2}\right)^n$	
	P(1) is true	1
		1
	Assume $P(k)$	3
	Prove $P(k+1)$ In Algebra class, 32 of the students are boys. Each boy knows five of the g	rirls
c)	in the class and each girl knows eight of the boys. How many girls are in t class?	he
Ans	If we put each boy in rows and each girl in column. Then total of each row is 5 and there are 32 rows.	2
	total number = $32 \times 5 = 160$	
	Since each girl knows eight boys,. Let there are n girls	2
	Since each girl knows eight boys,. Let mere die it girls	
	total number = 8n	ļ
	8n = 160 Now here of pints = 20	1
	Number of girls = 20 .	
d)	State strong form of Pigeonhole Principle (Extended Pigeonhole Principle Given 5 points in the plane with integer coordinates, show that there exist pair of points whose midpoint also has integer coordinates.	s). s a 1
Ans	Let q_1, q_2, \ldots, q_n be positive integers. If $q_1 + q_2 + \ldots + q_n - n + 1 > 0$ objects are put into n boxes, then either the first box contains at least q_1 objects, or the second box contains at least q_2 objects, or the n^{th} box contains at least q_n objects.	
ļ	Let there be four pigeonholes: EE, OO, EO, OE.	2
į	The five points be the five pigeons. Therefore, by Pigeonhole Principle, there must exist at least two points in one of these pigeonholes.	1
	Suppose, there are (at least) two points a and b in EE, it means both the coordinates of a and b are even numbers. Clearly their midpoint also has integer coordinates.	
	Similarly, it can be shown if either OO, EO or OE contains (at least) two points.	1
	-	

Ans	$\overline{}$: 0	1	2	3	4	5	6	7	8			
7(13	1	1	1					<u> </u>					
	2	$\frac{1}{1}$	2	1		<u> </u>		<u> </u>	↓ –	 -	•		
	3_	1	3	3_	1	<u> </u>	<u> </u>	<u> </u>	 	 -			
	4	1_	4	6_	4	$\frac{1}{5}$	 -	} −	+ -	 - -	1		İ
	5_	1	5_	10_	10	15	6	$\frac{1}{1}$	-	┼	1		
	6	$-\frac{1}{1}$	$\frac{6}{7}$	$\frac{ 15 }{21}$	35	35	$\frac{10}{21}$	17	+ ₁	 - 	1		_
	$\frac{7}{8}$	$-\frac{1}{1}$	1/8	$\frac{21}{28}$	56	$\frac{130}{70}$	56	28	8	1	1		5
f)	Define Euler q												
Ans	Euler function integers less the $\phi(480) = \phi(2^5)\phi(3^1)$	φ: N nan or	→ N equa	is def	fined whice	oy: φ(h are t	$\overline{(n)} =$ relativ	ery p	imbe	er of to n.	posit	 ive	1