Q. P. Coder 59962 [Total Marks: 100] Note: (i) All questions are compulsory. (ii) Figures to the right indicate marks for respective parts. | (i) Figures to the right indicate marks for respective parts. | | | |---|-----------------------|--| | i)Figures to the right material | | (20) | | Choose correct alternative in each of the following | | | | Choose correct alternative in each of the line i. If $T: U \to V$ is a linear transformation such that ker i. (for the linear transformation such that ker is a transformation | $r T = \{ 0 \} U$ | Always injective | | | <u>b)</u> | None the above | | Always bijective | <u>~)</u> _ | | | (c) Always offective Ans b Which of the following is a linear transformation from tran | m R ² to R | R ² | | ii. Which of the following is a linear transformation it | (b) | T(x,y)=(x,y+1) | | $T(\mathbf{r}, \mathbf{v}) = (\mathbf{x}, \mathbf{v})$ | (d) | All the above | | \"\" - + | | Lesthe following is | | | s V and W. | . Then, which of the following | | iii. Let $f: V \to W$ be an isomorphism of vocation | | | | | (b) | f is dijection | | (a) Dim V = dim W | (d) | All the above | | (c) f^1 exist | | i La non zero column | | (c) f^1 exist Ans \mathbf{d} iv. Consider the system $AX = b$, Where $A \in M_n(\mathbb{R})$ | an inverti | ible matrix and b a non zero | | iv. Consider the system $AX = b$, Where $A \in M_n(\mathbb{R})$ vector. The solution of above system obtained by | using cran | May not be unique | | vector. The solution of above system (a) Always unique | (b) | | | (a) | (d) | None of these. | | (c) Always Zero | 1 | | | Ans (a) Output Ans (b) Ans (a) v . Dimension of Solution space of a $m \times n$ homogement | meaus syst | em of linear equations $AX = 0$ is | | Dimension of Solution space of a $m \times n$ homoge | (b) | n | | (2) | (d) | n – Rank A | | m - Rank A | | | | Ans (d) | | | | vi. $\int_{1 \text{ et } F} \frac{1}{2\pi} \left(\begin{array}{cc} 1 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right)$ then E^{-1} is | | | | 0 1 0 | (b) | $(1 \ 0 \ 0)$ | | (-1) (-1) (0) | (b) | $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ | | $ \begin{array}{c cccc} \hline & (a) $ | | $(0 \ 0 \ 0)$ | | $\frac{0}{(1 \ 0 \ 0)}$ | (d) | $\begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$ | | $ \begin{array}{c c} \hline & (c) \\ \hline & (0 & 0 & 1) \end{array} $ | | 0 1 0 | | 0 1 0/ | | | | Ans (c) | he rank of | A is | | Ans (c) vii. If A is a non-singular matrix of order n, then t | (b) | 0 | | (a) n | (d) | None of these | | n-1 | | | | Ans (a) | 10 n, U(n) | is | | Ans (a) viii. Order of group of prime residue classes modu | (b) | n! | | (a) n | (d) | None of these | | (c) Euler function $\phi(n)$ | 1_\ | | | Ans (c) | | | | TANO | | | | 0 | | |---|--| | 2 | | | ix. | Let (| $G_1 = \{\overline{1}, \overline{2}, \overline{3}\} \mod 4$ under multiplication of under multiplication of residue classes m | of residue | olagon | | |------------|-------------|---|-------------------|---|--| | | | 3 under multiplication of residue classes m | odulo 3 T | classes modulo 4 and $G_2 = \{\overline{1}, \overline{2}\}$ | | | <u></u> | (a)_ | G ₁ and G ₂ are groups | (b) | | | | | (c) | only G ₂ is group | | only G ₁ is group | | | | Ans | (c) | (d) | None of these | | | x. | Ident | Identity element of group \mathbb{Q}^* under binary operation defined as $a*b = \frac{ab}{a}$ is | | | | | <u>-</u> | (a) | 1 group & under binary opera | tion define | ed as $a * b = \frac{ab}{a}$ is | | | | | <u> </u> | (b) | 2 | | | | (c) | 1 | (d) | | | | · <u> </u> | | $\frac{\overline{2}}{2}$ | (-) | 4 | | | | Ans | (b) | <u> </u> | | | | Q2. | Atten | opt any ONE question from the following: | | (08) | | | a) | i. | Let V, W be vector spaces over \mathbb{R} and $T: V$ -dimensional then show that dim V = dim Ker T + dim Im T . | <i>W</i> be a lir | near transformation and if V is finite | | | Ans | Proof: We have $T: V \to W$, be a linear transformation, ker $T \subseteq V$ is a subspace of V . | | |-----|--|----| | | Let $\dim V = n$, $\dim \ker T = r$, $\dim W = m$ | | | | Let $B = \{u_1, u_2, \dots, u_r\}$ be basis of ker T As ker T is subspace of V, B is a linearly independent subset of V and hence can be extended to a basis of V. | | | : | Let $B_1 = \{u_1, u_2, \dots, u_r, u_{r+1}, \dots, u_n\}$ be a basis of V, obtained by extension of B. | 1 | | | Let $w_i = T(V_{r+i}), \forall i = 1, \dots, n-r$. | .1 | | | Claim: $B_2 = \{w_1, w_2, \dots, w_{n-r}\}$ forms a basis of I_mT | | | | Let us prove first, B ₂ is linearly independent | 1 | | | Let $a_1, a_2, \dots a_{n-r}$ be scalars such that | | | | $a_1w_1 + a_2w_2 + \cdots + a_{n-1}w_{n-1} = 0$ | ı | | | But $T(u_{r+1}) = w_1, T(u_{r+2}) = w_2, \cdots T(u_n) = w_{n-r}$ | | | | $\therefore a_1 T(u_{r+1}) + a_2 T(u_{r+2}) + \cdots + a_{n-r} T(u_n) = 0$ | | | | $T(a_1u_{r+1} + a_2u_{r+2} + \cdots + a_{n-r}u_n) = 0$ | 1 | | | $\left(n-r\right)$ | | | | $\Rightarrow T\left(\sum_{i=1}^{n-r} a_i u_{r+i}\right) = 0$ | | | | n-r | | | | $\Rightarrow \sum a_i u_{r+i} \in \ker T$ | | | | i = 1 | | | | $\Rightarrow \exists b_1, b_2, \dots, b_r \text{ scalar s.t.}$ | 1 | | | n-r r | | | | $\sum a_i u_{r+i} = \sum b_j u \cdot \cdots as B \text{ is basis of ker } T$ | 1 | | | i=1 $i=1$ | | | | $\Rightarrow b_1 u_1 + b_2 u_2 + \cdots + b_r u_r - (a_1 u_{r+1} + \cdots + a_{n-r} u_n) = 0$ | | | | As $B_1 = \{u_1, u_2, \dots, u_r, u_{r+1}, \dots u_n\}$ is lin independent | 1 | | | \Rightarrow $b_1 = b_2 = b_r = 0$ and | | | | | | | | | | | | | | (4) | | $a_1 = a_2 = a_{n-r} = 0$ | 1 | |----------|---|------| | | $\Rightarrow (w_1, w_2, \dots, w_{n-r})$ is linearly independent $\dots (1)$ | ' | | | | | | | Claim: $\{w_1, w_2, \dots, w_{n-r}\}$ spans $l_m(T)$ | | | | Let $w \in I_mT$ | | | | $\Rightarrow \exists v \in V \text{ such that } T(v) = w.$ | | | <u> </u> | As $B_1 = \{u_1, u_2, \dots, u_r, u_{r+1}, u_{r+2}, \dots u_n\}$ is a basis of V. | | | | $\Rightarrow \exists b_1, b_2, \dots, b_n \in \mathbf{1R}$ such that | | | | $v = b_1 u_1 + b_2 u_2 + \cdots + b_r u_r + b_{r+1} u_{r+1} + \cdots + b_n u_n$ As T is linear, | | | | $T(v) = T(b_1u_1 + \cdots + b_ru_r) + T(b_{r+1}, u_{r+1} + \cdots + b_nu_n)$ | | | | $= b_1 T(u_1) + b_2 T(u_2) + \cdots + b_r T(u_r) + b_r + 1 T(u_{r+1}) + \cdots + b_n T(u_n) + \cdots$ as T is linear | | | | $T(v) = b_{r+1}T(u_{r+1}) + b_{r+2}T(u_{r+2}) + \cdots + b_nT(u_n)$ | | | | as $u_1, u_2, \dots, u_r \in \ker T$ | | | | $\Rightarrow T(\mathbf{v}) = \mathbf{b}_{r+1} \mathbf{w}_1 + \mathbf{b}_{r+2} \mathbf{w}_2 + \cdots + \mathbf{b}_n \mathbf{w}_{n \leftarrow Y}$ | | | | $\Rightarrow \mathbf{w} = \mathbf{b_{r+1}} \mathbf{w_i} + \mathbf{b_{r+2}} \mathbf{w_2} \cdot \cdots + \mathbf{b_n} \mathbf{w_n}.$ | | | | \Rightarrow w \in span $\{w_1, \dots, w_{n-r}\}$ | | | | \Rightarrow If $w \in I_m T \Rightarrow w \in \text{span} \{w_1, w_2, \cdots, w_{n-r}\}$ | | | | $\Rightarrow \{w_1, w_2, \dots, w_{n-r}\} \text{ spans } I_m T_{n-1} $ | | | | \Rightarrow $\{w_1, w_2, \dots, w_{n-r}\}$ forms a basis of $ImT \dots From (I)$ and (II) | | | | $\therefore \dim (I_m T) = n - r$ | | | | $\dim (\ker T) = r$ | | | | $\dim v = n = \dim (I_m T) + \dim (\ker T) = r + n - r,$ | · | | | $\therefore \left[\dim (V) = \dim (\ker T) + \dim (I_m T) \right]$ | | | | as $n = r + n - r$ | | | | Aunk nullity theorem is
verified. | | | ii | Let $T: V \to V$ be a linear transformation where V is a finite dimensional vector space | over | | <u> </u> | then prove that T is injective if and only if T is surjective. | | | | | 1 | |---|---|-----| | 1 | | ~ I | | | S | • 1 | | | _ | | | • | | | | 1 | Ans | Let $T: V \to V$. Suppose T is 1-1. | | |-----|----------|---|-----------------------------------| | | . 215 | $\therefore \ker T = \{0\}$ | 1 | | | | $\therefore \dim (\ker T) = 0.$ | $ {}_1 $ | | | | By rank nullity theorem. | | | | | $\dim V = \text{nullity } T + \text{Rank of } T$ | | | | ! | $\dim V = 0 + \text{Rank of } T$ | 1 | | | | $\dim V = \dim (I_m T)$ | | | | | As I _n T ⊆ V subspace of V such that | | | | | $\dim V = \dim I_m T$ | | | | | $\Rightarrow I_m T = V$ | 1 | | | |
∴ T(V) = V | | | | | T is onto. | | | | | Conversly, suppose T is onto. | $ _{1} $ | | | | $I_{m}T = V$ | | | | | T(V) = V. | 1 | | | | $\therefore \dim (I_m T) = \dim V$ | 1 | | | | Rank nullity theorem, | 1 | | | | $din(V) = dim(ker T) + dim I_m T$ | $\begin{vmatrix} 1 \end{vmatrix}$ | | | | \Rightarrow dim V = dim (ker T) + dim V | | | | | \Rightarrow dim ker T = 0. | 1 | | | | $\Rightarrow \ker T = \{0\}$ | | | | <u> </u> | ⇒ T is 1 – 1 | | | | | ∴ T is 1 – 1 if and only if T is onto. | | | Q.2 | Atten | apt any TWO questions from the following: (12) | | | b) | i. | | | | | | If $T: \mathbb{R}^3 \to \mathbb{R}^2$ such that $T(x,y,z) = (x,y)$, show that T is linear. Find ker T, basis | of | | | | ker T and nullity T. | | | | Ans | Let $(x, y, z) \in ker T$ so that | 1 | | | | x=0, y=0 | 1 | | | | Thus we put $z = t$, | 2 | | | | $\Rightarrow ker T = \{t(0,0,1) / t \in \mathbb{R}\}$. Therefore the basis of $ker F$ is $(0,0,1)$ and nullity | 2 | | | | T=1. | <u></u> | | | ii. | Check whether $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that | | | | | T(x,y,z) = (x+y,x-z,y+2z) is an isomorphism? | | (b) | Ans Let $(x, y, z) \in ker T$ so that | 11 | |---|--------| | The matrix corresponding to this system $\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$ whose row reduced form is | | | (1 1 0) | 1 | | whose row reduced form is $0 - 1$ whose row reduced form is | | | | 2 | | | | | $\begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \qquad \qquad \text{for } F = \{0\}$ | | | $\begin{vmatrix} 1 & 0 & 1 & 0 \end{vmatrix}$. Thus $x = y = z = 0 \implies \text{Ref } Y = \{0\}$ | 2 | | $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}. \text{ Thus } x = y = z = 0 \Rightarrow \ker F = \{0\}$ | | | Since Dim $V = 3 = \dim \mathbb{R}^3$, T is onto. Therefore T is invertible. Therefore T is an | | | isomorphism \mathbb{R}^n . | | | vi -i viector space is isolated | | | Ans Let $x_1 x_2 \dots x_n$ be a basis of | 2 | | $ \mathcal{L}_{-}$ \mathcal{L}_{-} \mathcal{L}_{-} | 2 | | | 2 | | Thus a LT is defined by $T(x) = (c_1,, c_n)$ is since Dim $V = n = \dim \mathbb{R}^n$, T is onto. Therefore T is invertible. Therefore $V \cong \mathbb{R}^n$. | - | | Since Diffi v = 1 | f(x) = | | iv. $P_3[\mathbb{R}]$ denote the vector space of all polynomials over \mathbb{R} of degree 3 or less an $D(\mathbb{R})$ | - | | $P_3[\mathbb{R}]$ denote the vector spanning. Let $\frac{df(x)}{dx}$, $\forall f(x) \in P_3[\mathbb{R}]$ denote the differentiation mapping. Let | | | $\frac{d(x)}{dx}, \forall f(x) \in P_3[\mathbb{R}] \text{ denote an}$ | | | $B = \{1, 1+x, 1+x^2, 1+x^3\} \text{ be the basis. Find} \left[m(D)\right]_B^B.$ | | | | \ | | Ans $Dv_1 = 0 = 0v_1 + 0v_2 + 0v_3 + 0v_4$ | | | $D_{v_1} = 1 - 1v_1 + 0v_2 + 0v_3 + 0v_4$ | 4 | | | | | $\int_{Dv_1}^{2} = 2x = -2v_1 + 2v_2 + 0v_3 + 0v_4$ | | | $Dv_3 = 2x = -2v_1 + 2v_2 + 0v_3 + 0v_4$ | | | $Dv_3 = 2x = -2v_1 + 2v_2 + 0v_3 + 0v_4$ | | | $Dv_3 = 2x = -2v_1 + 2v_2 + 0v_3 + 0v_4$ | 2 | | $Dv_3 = 2x = -2v_1 + 2v_2 + 0v_3 + 0v_4$ | 2 | | $Dv_3 = 2x = -2v_1 + 2v_2 + 0v_3 + 0v_4$ | 2 | | $Dv_3 = 2x = -2v_1 + 2v_2 + 0v_3 + 0v_4$ | 2 | | $Dv_3 = 2x = -2v_1 + 2v_2 + 0v_3 + 0v_4$ $Dv_4 = 3x^2 = -3v_1 + 0v_2 + 3v_3 + 0v_4$ $\Rightarrow \left[m(D) \right]_B^B = \begin{pmatrix} 0 & 1 & -2 & -3 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ | | | $Dv_3 = 2x = -2v_1 + 2v_2 + 0v_3 + 0v_4$ $Dv_4 = 3x^2 = -3v_1 + 0v_2 + 3v_3 + 0v_4$ $\Rightarrow \left[m(D) \right]_B^B = \begin{pmatrix} 0 & 1 & -2 & -3 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ | 2 | | $Dv_3 = 2x = -2v_1 + 2v_2 + 0v_3 + 0v_4$ $Dv_4 = 3x^2 = -3v_1 + 0v_2 + 3v_3 + 0v_4$ $\Rightarrow \left[m(D) \right]_B^B = \begin{pmatrix} 0 & 1 & -2 & -3 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ | 2 | | $Dv_{3} = 2x = -2v_{1} + 2v_{2} + 0v_{3} + 0v_{4}$ $Dv_{4} = 3x^{2} = -3v_{1} + 0v_{2} + 3v_{3} + 0v_{4}$ $\Rightarrow \left[m(D) \right]_{B}^{B} = \begin{pmatrix} 0 & 1 & -2 & -3 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $Q3. \text{ Attempt any ONE question from the following:} $ (08) | | | $Dv_{3} = 2x = -2v_{1} + 2v_{2} + 0v_{3} + 0v_{4}$ $Dv_{4} = 3x^{2} = -3v_{1} + 0v_{2} + 3v_{3} + 0v_{4}$ $\Rightarrow \left[m(D)\right]_{B}^{B} = \begin{pmatrix} 0 & 1 & -2 & -3 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\Rightarrow DNE \text{ question from the following:} $ (08) | | | Αn | (= | \Rightarrow) iven: $det(A^1, A^2) = 0$ iven: $\{A^1, A^2\}$ is linearly dependent. | | |----|-----|---|---| | | S | uppose $\{A^1, A^2\}$ is linearly independent $\{A^1, A^2\}$ is the basis of \mathbb{R}^2 set $E^1 = \alpha_1 A^1 + \alpha_2 A^2$ and $E^2 = \beta_1 A^1 + \beta_2 A^2$ set $E^1 = \alpha_1 A^1 + \alpha_2 A^2$ and $E^2 = \alpha_1 A^1 + \beta_2 A^2$ set $E^1 = (\alpha_1 A^1 + \alpha_2 A^2, \beta_1 A^1 + \beta_2 A^2)$ set $E^1 = (\alpha_1 \beta_2 - \alpha_2 \beta_1)$ det \beta_1 | 3 | | | | (\Leftarrow) Given: $\{A^1, A^2\}$ is linearly dependent. T.P.T: $\det(A^1, A^2) = 0$ | | | | | As $\{A^1, A^2\}$ is linearly dependent
$\therefore \text{Let } A^2 = cA^1, c \neq 0, c \in \mathbb{R}$ $\det(A^1, A^2) = \det(A^1, cA^1)$ $= \cot(A^1, A^1)$ | 3 | | | | | 2 | | | ii. | Prove that the general solution of the non homogeneous system is sum of a particular solution of the system and the solutions of the associated homogeneous system. Let $AX = b$ be a non-homogeneous system of linear equations. | | | | Ans | And $AX = 0$ be its associated homogeneous system $AX = b$.
Let x_0 be the particular solution of non-homogeneous system $AX = b$ is given
by,
T.P.T: Set of solutions of the non-homogeneous system $AX = b$ is given by,
$\{x_0 + x \mid x \text{ is a solution of associated homogeneous system } AX = b$.
Claim 1: Every element of $(*)$ is a solution of non-homogeneous system $AX = b$.
Let x is be a solution of associated homogeneous system. | | | | | $AX = 0$ $\therefore Ax = 0$
Then, $A(x_0 + x) = Ax_0 + Ax = b + 0 = b$
$\therefore x_0 + x$ is the solution of non-homogeneous system $AX = b$
Claim 2: Every solution of non-homogeneous system $AX = b$
Let x' be the solution of non-homogeneous system $AX = b$
$x' = x_0 + (x' - x_0)$ | | | | | Hence, x' is an element of (*) By claim 1 and claim 2 Set of solution of the non homogeneous system is precisely the sum of a particular solution of the system and the solutions of the associated homogeneous system. | | |) | (12) | | |----------|---|-------| | /
Q3. | resto questions from the following: | | | b) | i. Define adjoint of a matrix. Find A^{-1} for $A = \begin{pmatrix} 3 & 0 & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{pmatrix}$ using adjoint. | | | | Ans For $A \in M_n(\mathbb{R})$, Let A_{ij} be the matrix obtained from A by deleting its ith row and jth column Let $c_{ij} = (-1)^{i+j} \det A_{ij}$ $C = (c_{ij})$ is called matrix of cofactors $adj(A) := C^t$ Given matrix is $A = \begin{pmatrix} 3 & 0 & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{pmatrix}$ Matrix of cofactors is $C = \begin{pmatrix} 2 & 2 & 0 \\ -2 & 3 & 10 \\ 2 & -3 & 0 \end{pmatrix}$ Adj $(A) = C^t = \begin{pmatrix} 2 & 2 & 0 \\ -2 & 3 & 10 \\ 2 & -3 & 0 \end{pmatrix}$ $A^{-1} = \frac{1}{\det A} Adj(A) = \frac{1}{10} \begin{pmatrix} 2 & 2 & 3 & 10 \\ 2 & -3 & 0 \end{pmatrix}$ ii. Solve the following system using Cramer's rule. $2x + y + z = 1, x - y + 4z = 0, x + 2y - 2z = 3$ Ans $2x + y + z = 1, x - y + 4z = 0, x + 2y - 2z = 3$ The corresponding nonhomogeneous system is $\begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & 4 \\ 1 & 2 & -2 \end{pmatrix} \begin{pmatrix} x & 1 \\ y & x & 1 \end{pmatrix} \begin{pmatrix} x & 1 & 1 \\ 3 & 2 & -2 \\ 2 & 1 & 1 \\ 4 & 2 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 3 & 2 & -2 \\ 2 & 1 & 1 \\ 4 & 2 & -2 \end{pmatrix}$ $\det \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 4 \\ 1 & 2 & -2 \end{pmatrix}$ $\det \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 4 \\ 1 & 2 & -2 \end{pmatrix}$ $\det \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 4 \\ 1 & 2 & -2 \end{pmatrix}$ $\det \begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & 0 \\ 2 & 1 & 1 \\ 1 & -1 & 4 \\ 1 & 2 & -2 \end{pmatrix}$ $\det \begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & 0 \\ 2 & 1 & 1 \\ 1 & -1 & 4 \\ 1 & 2 & -2 \end{pmatrix}$ $\det \begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & 0 \\ 2 & 1 & 1 \\ 1 & -1 & 4 \\ 1 & 2 & -2 \end{pmatrix}$ $\det \begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & 0 \\ 2 & 1 & 1 \\ 1 & -1 & 4 \\ 1 & 2 & -2 \end{pmatrix}$ $\det \begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & 0 \\ 2 & 1 & 1 \\ 1 & -1 & 4 \\ 1 & 2 & -2 \end{pmatrix}$ $\det \begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & 4 \\ 1 & 2 & -2 \end{pmatrix}$ $\det \begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & 4 \\ 1 & 2 & -2 \end{pmatrix}$ $\det \begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & 4 \\ 1 & 2 & -2 \end{pmatrix}$ $\det \begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & 4 \\ 1 & 2 & -2 \end{pmatrix}$ $\det \begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & 4 \\ 1 & 2 & -2 \end{pmatrix}$ $\det \begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & 4 \\ 1 & 2 & -2 \end{pmatrix}$ $\det \begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & 4 \\ 1 & 2 & -2 \end{pmatrix}$ $\det \begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & 4 \\ 1 & 2 & -2 \end{pmatrix}$ $\det \begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & 4 \\ 1 & 2 & -2 \end{pmatrix}$ $\det \begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & 4 \\ 1 & 2 & -2 \end{pmatrix}$ $\det \begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & 4 \\ 1 & 2 & -2 \end{pmatrix}$ $\det \begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & 4 \\ 1 & 2 & -2 \end{pmatrix}$ $\det \begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & 4 \\ 1 & 2 & -2 \end{pmatrix}$ $\det \begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & 4 \\ 1 & 2 & -2 \end{pmatrix}$ $\det \begin{pmatrix} 2 & 1 & 1 \\ 2 & -1 & 1 \end{pmatrix}$ $\det \begin{pmatrix} 2 & 1 &$ | 2 2 2 | | iii. Define Elementary matrix. Which of the following are elementary matrices? Justify. $ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} C = \begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix} $ | |---| | watrix. Which of the following are elementary | | iii. Define Elementary matrix. Without $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix}$ | | | | 0 0 1/ (0 1 or dentity matrix by applying any of 2 | | $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ Ans Elementary matrix is the matrix obtained from the identity matrix by applying any of 2 Ans I be a property row operations. | | Ans Elementary matrix is the elementary row
operations, the elementary row operations, the elementary row operation $R_1 \rightarrow R_1 + 2R_3$ | | the elementary by applying row operation $R_1 \rightarrow R_1$ | | Ans Elementary matrix. Elementary row operations, the elementary row operations, and the elementary matrix by applying row operation $R_1 \rightarrow R_1 + 2R_3$. A is obtained from identity matrix. | | A is obtained from identity matrix. A is elementary matrix. B is obtained from identity matrix by applying row operation $R_2 \rightarrow R_3$ B is obtained from identity matrix. | | n is obtained from identity matrix by applying | | B is obtained from B is elementary matrix. B is elementary matrix. | | Lead from identity matrix by applying any of | | B is obtained from A. ∴ B is elementary matrix. C can not be obtained from identity matrix by applying any of the row operation. C is not elementary matrix. | | 1 | | AX = B has a system of linear equations $AX = B$ has a | | iv. $A \in M_n(\mathbb{R})$. Prove that the non-homogeneous system of linear equations $AX = b$ has a lation if and only if rank A =rank (A, b) | | | | iv. $A \in M_n(\mathbb{R})$. Flow $A = \operatorname{rank}(A, B)$ solution if and only if rank $A = \operatorname{rank}(A, B)$ and $A = \operatorname{rank}(A, B)$ The non-homogeneous system of linear equations $AX = b$ has a solution $A = \operatorname{rank}(C_1)$ (2) | | Solution if the solution of the system of linear equations $AX = b$ has the solution if the non-homogeneous system of linear equations $AX = b$ has the s | | $\begin{pmatrix} c_2 \\ \pm \end{pmatrix} \begin{pmatrix} 0 \\ \text{such that } Ac = b \end{pmatrix}$ | | $\Rightarrow \exists c = \left(\begin{array}{c} \vdots \\ \vdots \\ \end{array}\right)^{T} \left(\begin{array}{c} \vdots \\ \vdots \\ \end{array}\right)$ | | $C_n \in \mathbb{R}$ (not all zero) such that C_1 ? | | $\Leftrightarrow \exists c_1, c_2, \dots \circ n$ A is linearly dependent with 'n' columns of A | | $\Leftrightarrow \exists c_1, c_2, \dots c_n \in \mathbb{R} \text{ (not any alpha and a second of } A$ $\Leftrightarrow \text{Column vector } b \text{ is linearly dependent with 'n' columns of } A$ | | $\Leftrightarrow \operatorname{rank} A = \operatorname{rank} (A, b) \tag{08}$ | | ⇔ rank A-rank (00) | | Q4. Attempt any ONE question from the following: | | his not a square. Identify | | a) i. Discuss the group of symmetries of a rectangle which is not a square and let O denote Ans Let 1,2,3,4 denote the vertices of a rectangle which is not a square and let O denote | | Ans Let 1,2,3,4 denote the vertices of a rectangle which is not a square and the centroid of the rectangle. The group of symmetries of G consists of 2 rotations | | Ans Let 1,2,3,4 denote the verse. The group of symmetries of G consists of | | the rectangle. | | and 2 reflections. $(1,2,3,4)$ and $(1,2,3,4)$ and $(1,2,3,4)$. | | the centroid of the and 2 reflections. (1) $e = \text{Rotation of } 0^{\circ} \text{ about O in the anticlockwise direction} = \begin{pmatrix} 1,2,3,4 \\ 1,2,3,4 \end{pmatrix}$. (draw | | (1) e = Rotation of | | figure) figure direction = $\binom{1,2,3,4}{3,4,1,2}$ = | | figure) (2) σ_1 = Rotation of 180° about O in the anticlockwise direction = $\binom{1,2,3,4}{3,4,1,2}$ = | | $(2) \sigma_1 = \text{Kolation of }$ | | (1,3)(2,4). (draw figure) | | 9 | | · · · · · · · · · · · · · · · · · · · | | | (3) σ_2 = Reflection about the line passing through O which is the perpendicular bisector of side $(1, 2) = \binom{1,2,3,4}{2,1,4,3} = (1,2)(3,4)$. (draw figure) (4) σ_3 = Reflection about the line passing through O which is the perpendicular bisector of side $(1,4) = \binom{1,2,3,4}{2,3,2,1} = (1,4)(2,3)$. (draw figure) Thus $G = \{e, \sigma_1, \sigma_2, \sigma_3\}$ is a group of order 4. Further, since the square of every element of G gives the identity element e (this can also be seen geometrically). Therefore G is actaually the Klein-4 group V_4 . | 6 | |-----|---|---| | ii. | Define Subgroup. Let G be a group and H, K be subgroups of G . Prove that $H \cap K$ is a subgroup of G but $H \cup K$ may not be a subgroup of G . Let H be a non-empty subset of a group G . We say, H is a subgroup of G if H itself is a group under the same binary operation as of G . Let H, K be subgroups of G . $\therefore e \in H$ and $e \in K \Rightarrow e \in H \cap K \Rightarrow H \cap K \neq \emptyset$ Consider any $a, b \in H \cap K \Rightarrow a, b \in H$ and $a, b \in K$ Since H , K are subgroups of G , we get $ab^{-1} \in H$ and $ab^{-1} \in K$. $\therefore ab^{-1} \in H \cap K$ $\therefore H \cap K$ is a subgroup of G Further, $H \cup K$ may not be a subgroup of G . For example, Consider the group $U(8) = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$ under multiplication modulo g . Let g and g and g are subgroups of g which follows from the following composition tables: g and g are subgroups of g which follows from g and g are subgroups of g which follows from g and g are subgroups of g and g are subgroups of g which follows from g and g are subgroups of | 3 | | Q4. | But $H \cup K = \{\overline{1}, \overline{3}, \overline{5}\}$ is not a subgroup of G since $\overline{3}, \overline{5} \in H \cup K$ and $\overline{3} \cdot \overline{5} = \overline{7} \notin H \cup K$. Attempt any TWO questions from the following: (12) | | | b) | i. Let G be a group with identity e.
(p) Show that: $(ab)^{-1} = b^{-1}a^{-1}, \forall a, b \in G$.
(q) If $a^2 = e, \forall a \in G$, then G is abelian. | | | 11 | _ \ | |----|-----| | 11 | -) | | | | | iii. Let G be a group and $a \in G$. Show that $H = \{a^n n \in \mathbb{Z} \text{ is the smallest subgroup of } G$ containing a . Ans $H \neq \phi$, since $e = a^0 \in H$. Also, for $a^n, a^m \in H$,
$a^n(a^m)^{-1} = a^{n-m} \in H$. Therefore, H is a subgroup of G . Also, if K is a subgroup of G containing a , then $a, a^{-1} \in K$. Now, since K is a group, $a^n, a^{-n} = (a^{-1})^n \in K$, $\forall n \in \mathbb{N}$. Whence $a^n \in K$, $\forall n \in \mathbb{Z}$. $\forall n \in \mathbb{Z}$ is the smallest subgroup of G convaining a . iv. Prove that $G = \{\begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \}$ is a group under matrix addition. Ans Closure: $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} + \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} a+c & b+d \\ -b-d & a+c \end{pmatrix} \in G$ Prove Associative Prove identity is $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ Prove inverse of $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ is $\begin{pmatrix} -a & -b \\ b & -a \end{pmatrix}$. Q5. Attempt any FOUR questions from the following: (20) Ans Proof: Let $C_1 \cap C_1 \cap C_2 \cap C_2 \cap C_3 \cap C_4 \cap C_4 \cap C_4 \cap C_5 \cap C_4 \cap C_5 \cap C_4 \cap C_5 C_$ | | $-\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2}$ | | |---|---------------|---|---------------------------------------| | We have $(ab)(ab)$ used by the sides of this equation first by a and then by Left-multiplying both sides of this equation first by a and then by then by b^{-1} yields $(ab)^{-1} = b^{-1}a^{-1}$. (a) Let $a, b \in G$, then $a^2 = e$ and $b^2 = e$ as also $(ab)^2 = e$, which implies $(ab)(ab) = aa \Rightarrow bab = a \Rightarrow bab^2 = ab \Rightarrow ba = ab$. $\therefore G$ is abelian ii. Construct composition table of \mathbb{Z}_5^* under multiplication modulo 5. Also find order of its each element. Ans $\mathbb{Z}_5^* = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$ Composition table $\overline{1}$ is the identity. $\therefore o(\overline{1}) = 1$ $\overline{2} = 2 + 4$, $\overline{2} = 3 = 3$, $\overline{2}^4 = \overline{1}$ $\therefore o(\overline{3}) = 4$ $\overline{3}^2 = \overline{4}$, $3^3 = \overline{2}$, $3^4 = \overline{1}$ $\therefore o(\overline{3}) = 4$ $\overline{3}^2 = \overline{4}$, $3^3 = \overline{2}$, $3^4 = \overline{1}$ $\therefore o(\overline{3}) = 4$ $\overline{3}^2 = \overline{4}$, $a = \overline{3}^3 = \overline{2}$, $a = \overline{1}$ $\therefore o(\overline{3}) = 4$ $\overline{3}^2 = \overline{4}$, $a = \overline{3}^3 = \overline{2}$, $a = \overline{1}$ $\therefore o(\overline{3}) = 4$ $\overline{3}^2 = \overline{4}$, $a = \overline{3}^3 = \overline{2}$, $a = \overline{1}$ $\therefore o(\overline{3}) = 4$ $\overline{3}^2 = \overline{4}$, $a = \overline{3}$, $a = \overline{1}$ $\Rightarrow o(\overline{3}) = 4$ $\overline{3}^2 = \overline{4}$, $a = \overline{3}$, $a = \overline{1}$ $\Rightarrow o(\overline{3}) = 4$ $\overline{3}^2 = \overline{4}$, $a = \overline{3}$, $a = \overline{1}$ 1$ | | (a) To show that for any group G , $(ab)^{-1} = b^{-1}a$ | | | thenbyb ⁻¹ yields(ab) ⁻¹ = $b^{-1}a^{-1}$. (a) Let $a,b \in G$, then $a^2 = e$ and $b^2 = e$ as also (ab) ² = e , which implies (ab)(ab) = $aa \underset{\longrightarrow}{\Longrightarrow} bab = a \Rightarrow bab^2 = ab \Rightarrow ba = ab$. 3 ii. Construct composition table of \mathbb{Z}_5^* under multiplication modulo 5. Also find order of its each element. Ans $\mathbb{Z}_5^* = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$ Composition table $\overline{1}$ is the identity. b : | Ans | We have $(ab)(ab)^{-1} = e$. | 3 | | thenbyb 'yetcus(ut)' (q) Let $a,b \in G$, then $a^2 = e$ and $b^2 = e$ as also $(ab)^2 = e$, which improve $(ab)(ab) = aa \underset{\square G}{\Rightarrow} bab = a \Rightarrow bab^2 = ab \Rightarrow ba = ab$. ii. Construct composition table of \mathbb{Z}_5^e under multiplication modulo 5. Also find order of its each element. Ans $\mathbb{Z}_5^e = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$ Composition table $\overline{1}$ is the identity. $\cdots o(\overline{1}) = 1$ $\overline{2}^2 = \overline{4}, \overline{3}^3 = \overline{3}, \overline{2}^4 = \overline{1} \cdots o(\overline{3}) = 4$ $\overline{4}^2 = \overline{1} \cdots o(\overline{4}) = 2$ iii. Let G be a group and $a \in G$. Show that $H = \{a^n \mid n \in \mathbb{Z} \text{ is the smallest subgroup of } G$ containing a . Ans $H \neq \phi$, since $e = a^0 \in H$. Also, for $a^n, a^m \in H$, $a^n(a^m)^{-1} = a^{n-m} \in H$. Therefore, H is a subgroup of G . Also, if K is a subgroup of G containing a , then $a, a^{-1} \in K$. Now, since K is a group, A and A is a subgroup
of A containing A . iv. Prove that $G = \{(a b) : a, b \in \mathbb{R}\}$ is a group under matrix addition. Ans Closure: $(a b) + (c d) = (a + c b + d) \in G$ Prove Associative Prove Identity is $(a b) = (a $ | | 1 - O' 1-3 MOTH SILIES OF MIN TH | 1 | | (a) Let a, b ∈ c, then a = a ⇒ bab = a ⇒ ba = ab. (ab)(ab) = aa ⇒ bab = a ⇒ bab² = ab ⇒ ba = ab. (b) (ab) = aa ⇒ bab = a ⇒ bab² = ab ⇒ ba = ab. (c) is abelian (d) Construct composition table of Z*s under multiplication modulo 5. Also find order of its each element. (d) Composition table 1 | 1 | then by h^{-1} yields $(ab)^{-1} = b^{-1}a^{-1}$. | 1 | | (ab)(ab) = ad | 1 | then $a^2 = e$ and $b^2 = e$ as also (ab) | 1 1 | | ii. Construct composition table of Z₅* under multiplication modulo 5. Also find order of its each element. Ans Z₅* = (1, 2, 3, 4) Composition table 1 is the identity. ∴ o(1) = 1 | 1 | $(ab)(ab) = aa \Rightarrow bab = a \Rightarrow bab^2 = ab \Rightarrow ba = ab$ | 13 | | Ans $\mathbb{Z}_5^* = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$ Composition table $\overline{1}$ is the identity. \therefore $o(\overline{1}) = 1$ $\overline{2^2 = \overline{4}}$, $\overline{2^3} = \overline{3}$, $\overline{2^4 = \overline{1}}$ \therefore $o(\overline{2}) = 4$ $\overline{3^2 = \overline{4}}$, $\overline{3^3 = \overline{2}}$, $\overline{3^4 = \overline{1}}$ \therefore $o(\overline{3}) = 4$ $\overline{4^2 = \overline{1}}$ \therefore $o(\overline{4}) = 2$ iii. Let G be a group and $a \in G$. Show that $H = \{a^n n \in \mathbb{Z} \text{ is the smallest subgroup of } G$ of Goontaining a . H $\neq \phi$, since $e = a^0 \in H$. Also, for $a^n, a^m \in H$, $a^n(a^m)^{-1} = a^{n-m} \in H$. Therefore, H is a subgroup of G . Also, if K is a subgroup of G containing a , then $a, a^{-1} \in K$. Now, since K is a group, Also, if K is a subgroup of G containing a , then $a, a^{-1} \in K$, so that H is the smallest subgroup of G convaining a . iv. Prove that $G = \{\begin{pmatrix} a & b \\ -b & a \end{pmatrix} + \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} a + c & b + d \\ -b - d & a + c \end{pmatrix} \in G$ Prove Associative Prove Identity is $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ Prove inverse of $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ is a group under matrix addition. Q0 Prove inverse of $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ is $\begin{pmatrix} 0 & 0 \\ -b & a \end{pmatrix}$ Q5. Attempt any FOUR questions from the following: Q0 Q0 Prove inverse of Q1 Prove inverse of Q2 Prove inverse of Q3 Prove inverse of Q4 Prove inverse of Q4 Prove inverse of Q5 | | (db)(db) - LCL | | | Ans $\mathbb{Z}_5^* = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$ Composition table $\overline{1}$ is the identity. \therefore $o(\overline{1}) = 1$ $\overline{2^2 = \overline{4}}$, $\overline{2^3} = \overline{3}$, $\overline{2^4 = \overline{1}}$ \therefore $o(\overline{2}) = 4$ $\overline{3^2 = \overline{4}}$, $\overline{3^3 = \overline{2}}$, $\overline{3^4 = \overline{1}}$ \therefore $o(\overline{3}) = 4$ $\overline{4^2 = \overline{1}}$ \therefore $o(\overline{4}) = 2$ iii. Let G be a group and $a \in G$. Show that $H = \{a^n n \in \mathbb{Z} \text{ is the smallest subgroup of } G$ of Goontaining a . H $\neq \phi$, since $e = a^0 \in H$. Also, for $a^n, a^m \in H$, $a^n(a^m)^{-1} = a^{n-m} \in H$. Therefore, H is a subgroup of G . Also, if K is a subgroup of G containing a , then $a, a^{-1} \in K$. Now, since K is a group, Also, if K is a subgroup of G containing a , then $a, a^{-1} \in K$, so that H is the smallest subgroup of G convaining a . iv. Prove that $G = \{\begin{pmatrix} a & b \\ -b & a \end{pmatrix} + \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} a + c & b + d \\ -b - d & a + c \end{pmatrix} \in G$ Prove Associative Prove Identity is $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ Prove inverse of $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ is a group under matrix addition. Q0 Prove inverse of $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ is $\begin{pmatrix} 0 & 0 \\ -b & a \end{pmatrix}$ Q5. Attempt any FOUR questions from the following: Q0 Q0 Prove inverse of Q1 Prove inverse of Q2 Prove inverse of Q3 Prove inverse of Q4 Prove inverse of Q4 Prove inverse of Q5 | 1 | :: G is abelian | 113 | | Ans $\mathbb{Z}_5^* = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$ Composition table $\overline{1}$ is the identity. \circ $o(\overline{1}) = 1$ $\overline{2^2 = \overline{4}}$, $\overline{2^3} = \overline{3}$, $\overline{2^4 = \overline{1}}$ \circ $o(\overline{3}) = 4$ $\overline{2^2 = \overline{4}}$, $\overline{3^3 = \overline{2}}$, $\overline{3^4 = \overline{1}}$ \circ $o(\overline{3}) = 4$ $\overline{4^2 = \overline{1}}$ \circ $o(\overline{4}) = 2$ iii. Let G be a group and $a \in G$. Show that $H = \{a^n n \in \mathbb{Z} \text{ is the smallest subgroup of } G$ containing a . H $\neq \phi$, since $e = a^0 \in H$. Also, for $a^n, a^m \in H$, $a^n(a^m)^{-1} = a^{n-m} \in H$. Therefore, H is a subgroup of G . Also, if K is a subgroup of G containing a , then $a, a^{-1} \in K$. Now, since K is a group, Also, if K is a subgroup of G convaining a . iv. Prove that $G = \{\begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R}\}$ is a group under matrix addition. Ans Closure: $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} + \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} a+c & b+d \\ -b-d & a+c \end{pmatrix} \in G$ Prove Associative Prove Identity is $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ Prove inverse of $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ is a group under matrix addition. Q0 Prove inverse of $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ is $\begin{pmatrix} a & b \\ -b & -a \end{pmatrix}$ Q5. Attempt any FOUR questions from the following: Q0 Prove that if V_1, V_2, \dots, V_n Ilinearly independent then $T(v_1), T(v_2), \dots, T(v_n)$ are linearly independent elements of Since T is it. it follows that $T(c_1v_1 + \dots + c_nv_n) = o$. As ker $T = \{o\}$, this implies that $c_1v_1 + \dots + c_nv_n = o$ which further implies that c_1, c_2, \dots, c_n | | Construct composition table of Z ₅ under many | | | Ans $\mathbb{Z}_5^* = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$ Composition table $\overline{1}$ is the identity. $\therefore o(\overline{1}) = 1$ $\overline{2^2} = \overline{4}, \overline{2^3} = \overline{3}, \overline{2^4} = \overline{1} \therefore o(\overline{2}) = 4$ $\overline{3^2} = \overline{4}, \overline{3^3} = \overline{2}, \overline{3^4} = \overline{1} \therefore o(\overline{3}) = 4$ $\overline{4^2} = \overline{1} \therefore o(\overline{4}) = 2$ iii. Let G be a group and $a \in G$. Show that $H = \{a^n \mid n \in \mathbb{Z} \text{ is the smallest subgroup of } G$ containing a . Ans $H \neq \phi$, since $e = a^0 \in H$. Also, for $a^n, a^m \in H$, $a^n(a^m)^{-1} = a^{n-m} \in H$. Therefore, H is a subgroup of G . Also, if K is a subgroup of G containing a , then $a, a^{-1} \in K$. Now, since K is a group, $\therefore a^n, a^{-n} = (a^{-1})^n \in K, \forall n \in \mathbb{N}$. Whence $a^n \in K, \forall n \in \mathbb{Z}$. $\therefore H \subseteq K$, so that H is the smallest subgroup of G convaining a . iv. Prove that $G = \{\begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \}$ is a group under matrix addition. Ans Closure: $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} + \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} a+c & b+d \\ -b-d & a+c \end{pmatrix} \in G$ Prove Associative Prove Identity is $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ Prove inverse of $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ is $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ is $\begin{pmatrix} -a & -b \\ -b & -a \end{pmatrix}$. Q5. Attempt any FOUR questions from the following: (20) Ans Proof: Let $C_1 \cap C_1 \cap C_2 \cap C_2 \cap C_3 \cap C_4 C_4$ | 1" | each element. | | | Ans $\mathbb{Z}_5^* = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$ Composition table $\overline{1}$ is the identity. $\therefore o(\overline{1}) = 1$ $\overline{2^2} = \overline{4}, \overline{2^3} = \overline{3}, \overline{2^4} = \overline{1} \therefore o(\overline{2}) = 4$ $\overline{3^2} = \overline{4}, \overline{3^3} = \overline{2}, \overline{3^4} = \overline{1} \therefore o(\overline{3}) = 4$ $\overline{4^2} = \overline{1} \therefore o(\overline{4}) = 2$ iii. Let G be a group and $a \in G$. Show that $H = \{a^n \mid n \in \mathbb{Z} \text{ is the smallest subgroup of } G$ containing a . Ans $H \neq \phi$, since $e = a^0 \in H$. Also, for $a^n, a^m \in H$, $a^n(a^m)^{-1} = a^{n-m} \in H$. Therefore, H is a subgroup of G . Also, if K is a subgroup of G containing a , then $a, a^{-1} \in K$. Now, since K is a group, $\therefore a^n, a^{-n} = (a^{-1})^n \in K, \forall n \in \mathbb{N}$. Whence $a^n \in K, \forall n \in \mathbb{Z}$. $\therefore H \subseteq K$, so that H is the smallest subgroup of G convaining a . iv. Prove that $G = \{\begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \}$ is a group under matrix addition. Ans Closure: $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} + \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} a+c & b+d \\ -b-d & a+c \end{pmatrix} \in G$ Prove Associative Prove Identity is $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ Prove inverse of $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ is $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ is $\begin{pmatrix} -a & -b \\ -b & -a \end{pmatrix}$. Q5. Attempt any FOUR questions from the following: (20) Ans Proof: Let $C_1 \cap C_1 \cap C_2 \cap C_2 \cap C_3 \cap C_4 C_4$ | | | 2 | | Composition table I
is the identity. \dot{o} o($\bar{1}$) = 1 $\bar{2}^2 = 4$, $\bar{2}^3 = \bar{3}$, $\bar{2}^4 = \bar{1}$ $o(\bar{2}) = 4$ $\bar{3}^2 = 4$, $\bar{3}^3 = \bar{2}$, $\bar{3}^4 = \bar{1}$ $o(\bar{3}) = 4$ $\bar{4}^2 = \bar{1}$ $o(\bar{4}) = 2$ iii. Let G be a group and $a \in G$. Show that $H = \{a^n n \in \mathbb{Z} \text{ is the smallest subgroup of } G$ containing a . Ans $H \neq \phi$, since $e = a^0 \in H$. Also, for a^n , $a^m \in H$, $a^n(a^m)^{-1} = a^{n-m} \in H$. Therefore, H is a subgroup of G . Also, if K is a subgroup of G containing a , then a , $a^{-1} \in K$. Now, since K is a group, Also, if K is a subgroup of G containing a . iv. Prove that $G = \{\begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \}$ is a group under matrix addition. Ans Closure: $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} + \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} a+c & b+d \\ -b-d & a+c \end{pmatrix} \in G$ Prove Associative Prove Identity is $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ Prove inverse of $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ is $\begin{pmatrix} a & b \\ -b & -a \end{pmatrix}$. Q5. Attempt any FOUR questions from the following: (20) Ans Proof: Let $c_1 T v_1 + c_2 T v_2 + \dots + c_n T v_n = 0$ Since T is 1.t. it follows that T ($c_1 v_1 + \dots + c_n v_n = 0$. As ker $T = \{o\}$, this implies that $c_1 v_1 + \dots + c_n v_n = 0$ which further implies that $c_1 v_2 + \dots + c_n v_n = 0$ which further implies that $c_1 v_2 + \dots + c_n v_n = 0$ which further implies that $c_1 v_2 + \dots + c_n v_n = 0$ which further implies that $c_1 v_2 + \dots + c_n v_n = 0$ which further implies that $c_1 v_2 + \dots + c_n v_n = 0$ which further implies that $c_1 v_2 + \dots + c_n v_n = 0$ which further implies that $c_1 v_2 + \dots + c_n v_n = 0$ which further implies that $c_1 v_2 + \dots + c_n v_n = 0$ which further implies that $c_1 v_2 + \dots + c_n v_n = 0$ which further implies that $c_1 v_2 + \dots + c_n v_n = 0$ which further implies that $c_1 v_2 + \dots + c_n v_n = 0$ which further implies that $c_1 v_2 + \dots + c_n v_n = 0$ which further implies that $c_1 v_2 + \dots + c_n v_n = 0$ which further implies that $c_1 v_2 + \dots + c_n v_n = 0$ which further implies that $c_1 v_2 + \dots + c_n v_n = 0$ which further implies that $c_1 v_2$ | Ans | $-\frac{1}{7/2} = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$ | | | T is the identity. $\therefore 0(1)^{-1} = 1$ | Kiis | Composition table | 111 | | Iii. Let G be a group and a of G containing a. Ans $H \neq \phi$, since $e = a^0 \in H$. Also, for $a^n, a^m \in H$, $a^n(a^m)^{-1} = a^{n-m} \in H$. Therefore, H is a subgroup of G. Also, if K is a subgroup of G containing a, then $a, a^{-1} \in K$. Now, since K is a group, $a = (a^{-1})^n \in K$, $\forall n \in \mathbb{N}$. Whence $a^n \in K$, $\forall n \in \mathbb{Z}$. $\therefore H \subseteq K$, so that H is the smallest subgroup of G convaining a. Iv. Prove that $G = \{\begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \}$ is a group under matrix addition. Ans Closure: $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} + \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} a+c & b+d \\ -b-d & a+c \end{pmatrix} \in G$ Prove Associative Prove Identity is $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ Prove inverse of $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ is $\begin{pmatrix} -a & -b \\ b & -a \end{pmatrix}$. O5. Attempt any FOUR questions from the following: (20) Ans Proof: Let $c_1 T v_1 + c_2 T v_2 + \dots + c_n T v_n = 0$ Since T is 1.T it follows that $T (c_1 v_1 + \dots + c_n v_n) = a$. As ker $T = \{a\}$, this implies that $c_1 v_1 + \dots + c_n v_n = a$ which further implies that $c_1 v_2 + \dots + c_n v_n = a$. | | $\bar{1}$ is the identity. $0(1) = 1$ | 1 1 | | Iii. Let G be a group and a of G containing a. Ans $H \neq \phi$, since $e = a^0 \in H$. Also, for $a^n, a^m \in H$, $a^n(a^m)^{-1} = a^{n-m} \in H$. Therefore, H is a subgroup of G. Also, if K is a subgroup of G containing a, then $a, a^{-1} \in K$. Now, since K is a group, $a = (a^{-1})^n \in K$, $\forall n \in \mathbb{N}$. Whence $a^n \in K$, $\forall n \in \mathbb{Z}$. $\therefore H \subseteq K$, so that H is the smallest subgroup of G convaining a. Iv. Prove that $G = \{\begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \}$ is a group under matrix addition. Ans Closure: $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} + \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} a+c & b+d \\ -b-d & a+c \end{pmatrix} \in G$ Prove Associative Prove Identity is $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ Prove inverse of $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ is $\begin{pmatrix} -a & -b \\ b & -a \end{pmatrix}$. O5. Attempt any FOUR questions from the following: (20) Ans Proof: Let $c_1 T v_1 + c_2 T v_2 + \dots + c_n T v_n = 0$ Since T is 1.T it follows that $T (c_1 v_1 + \dots + c_n v_n) = a$. As ker $T = \{a\}$, this implies that $c_1 v_1 + \dots + c_n v_n = a$ which further implies that $c_1 v_2 + \dots + c_n v_n = a$. | 1 | $\frac{1}{2^2} = \overline{4}$, $\overline{2}^3 = \overline{3}$, $\frac{2^4}{7} = \frac{1}{7}$ $\frac{1}{7} \cdot \frac{1}{7} \cdot \frac{1}{7} = \frac{1}{7}$ | i | | Iii. Let G be a group and a of G containing a. Ans $H \neq \phi$, since $e = a^0 \in H$. Also, for $a^n, a^m \in H$, $a^n(a^m)^{-1} = a^{n-m} \in H$. Therefore, H is a subgroup of G. Also, if K is a subgroup of G containing a, then $a, a^{-1} \in K$. Now, since K is a group, $a = (a^{-1})^n \in K$, $\forall n \in \mathbb{N}$. Whence $a^n \in K$, $\forall n \in \mathbb{Z}$. $\therefore H \subseteq K$, so that H is the smallest subgroup of G convaining a. Iv. Prove that $G = \{\begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \}$ is a group under matrix addition. Ans Closure: $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} + \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} a+c & b+d \\ -b-d & a+c \end{pmatrix} \in G$ Prove Associative Prove Identity is $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ Prove inverse of $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ is $\begin{pmatrix} -a & -b \\ b & -a \end{pmatrix}$. O5. Attempt any FOUR questions from the following: (20) Ans Proof: Let $c_1 T v_1 + c_2 T v_2 + \dots + c_n T v_n = 0$ Since T is 1.T it follows that $T (c_1 v_1 + \dots + c_n v_n) = a$. As ker $T = \{a\}$, this implies that $c_1 v_1 + \dots + c_n v_n = a$ which further implies that $c_1 v_2 + \dots + c_n v_n = a$. | | $\frac{2}{3^2} = \frac{7}{4}$, $\frac{3}{3^3} = \frac{1}{2}$, $3^4 = 1$ $3^4 = 1$ | L | | Iii. Let G be a group and a of G containing a. Ans $H \neq \phi$, since $e = a^0 \in H$. Also, for $a^n, a^m \in H$, $a^n(a^m)^{-1} = a^{n-m} \in H$. Therefore, H is a subgroup of G. Also, if K is a subgroup of G containing a, then $a, a^{-1} \in K$. Now, since K is a group, $a = (a^{-1})^n \in K$, $\forall n \in \mathbb{N}$. Whence $a^n \in K$, $\forall n \in \mathbb{Z}$. $\therefore H \subseteq K$, so that H is the smallest subgroup of G containing a. Iv. Prove that $G = \{\begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \}$ is a group under matrix addition. Ans Closure: $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} + \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} a+c & b+d \\ -b-d & a+c \end{pmatrix} \in G$ Prove Associative Prove Identity is $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ Prove inverse of $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ is $\begin{pmatrix} -a & -b \\ b & -a \end{pmatrix}$. Q5. Attempt any FOUR questions from the following: (20) Ans Proof: Let $c_1Tv_1 + c_2Tv_2 + \dots + c_nTv_n = 0$ Since T is i.t. it follows that $T(c_1v_1 + \dots + c_nv_n) = a$. As ker $T = \{a\}$, this implies that $c_1v_1 + \dots + c_nv_n = a$ which further implies that $c_1v_1 + \dots + c_nv_n = a$. | | $\overline{A}^2 = \overline{1}$: $o(\overline{A}) = 2$ \overline{C} and \overline{C} is the smallest subject \overline{A} is the smallest subject \overline{A} . | Stoab | | Ans $H \neq \phi$, since $e = a^0 \in H$. Also, for $a^n, a^m \in H$, $a^n(a^m)^{-1} = a^{n-m} \in H$. Ans $H \neq \phi$, since $e = a^0 \in H$. Also, for $a^n, a^m \in H$, $a^n(a^m)^{-1} = a^{n-m} \in H$. Therefore, H is a subgroup of G . Also, if K is a subgroup of G containing a , then $a, a^{-1} \in K$. Now, since K is a group, Also, if K is a subgroup of G containing a . iv. Prove that $G = \{\begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \}$ is a group under matrix addition. Ans Closure: $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} + \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} a+c & b+d \\ -b-d & a+c \end{pmatrix} \in G$ Prove Associative Prove Identity is $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ Prove inverse of $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ is $\begin{pmatrix} -a & -b \\ b & -a \end{pmatrix}$. Q5. Attempt any FOUR questions from the following: (20) Ans Proof: Let $c_1Tv_1 + c_2Tv_2 + \dots + c_nTv_n = 0$ Since T is i.t. it follows that T ($c_1v_1 + \dots + c_nv_n = 0$ which further implies that c_1, c_2, \dots, c_n implies that $c_1v_1 + \dots + c_nv_n = 0$ which further implies that c_1, c_2, \dots, c_n | _ | I of C he a group and w | | | Also, if K is a subgroup of G containing a , then $a, a \in K$. From A looks if K is a subgroup of G containing a . iv. Prove that $G = \{\begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \}$ is a group under matrix addition. Ans Closure: $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} + \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} a+c & b+d \\ -b-d & a+c \end{pmatrix} \in G$ Prove Associative Prove Identity is $\begin{pmatrix} 0 & 0 \\ 0 & 0
\end{pmatrix}$ Prove inverse of $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ is $\begin{pmatrix} -a & -b \\ b & -a \end{pmatrix}$ Q5. Attempt any FOUR questions from the following: (20) Ans Proof: Let $C_1 \cap C_1 \cap C_2 \cap C_2 \cap C_3 \cap C_4 \cap C_4 \cap C_4 \cap C_5 C_$ | 1111. | of G containing a. $\frac{1}{n} = \frac{n^{-m}}{n} \in H.$ | 1 | | Also, if K is a subgroup of G containing a , then $a, a \in K$. From A looks if K is a subgroup of G containing a . iv. Prove that $G = \{\begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \}$ is a group under matrix addition. Ans Closure: $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} + \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} a+c & b+d \\ -b-d & a+c \end{pmatrix} \in G$ Prove Associative Prove Identity is $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ Prove inverse of $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ is $\begin{pmatrix} -a & -b \\ b & -a \end{pmatrix}$ Q5. Attempt any FOUR questions from the following: (20) Ans Proof: Let $C_1 \cap C_1 \cap C_2 \cap C_2 \cap C_3 \cap C_4 \cap C_4 \cap C_4 \cap C_5 C_$ | | of a of a of a a b a a a a b a | 3 | | Also, if K is a subgroup of G containing a , then $a, a \in K$. Find G is A and A is an allest subgroup of A containing A . In the smallest subgroup of A containing A containing A . In the smallest subgroup of A containing A containing A . In the smallest subgroup of A containing A containing A containing A . In the smallest subgroup of A containing A containing A containing A . In the smallest subgroup of A containing | Ans | $H \neq \phi$, since $e = u$ C. If the subgroup of G . | ıp, | | the smallest subgroup of G convaining a. iv. Prove that $G = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \right\}$ is a group under matrix addition. Ans Closure: $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} + \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} a+c & b+d \\ -b-d & a+c \end{pmatrix} \in G$ Prove Associative Prove Identity is $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ Prove inverse of $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ is $\begin{pmatrix} -a & -b \\ b & -a \end{pmatrix}$ Q5. Attempt any FOUR questions from the following: (20) Alter $T: V \to W$ be a linear transformation such that $\ker T = \{0\}$. Prove that if v_1, v_2, \dots, v_n linearly independent then $T(v_1), T(v_2), \dots, T(v_n)$ are linearly independent elements of Since T is 1.t. it follows that $T(c_1v_1 + \dots + c_nv_n) = 0$. As $\ker T = \{o\}$, this implies that $c_1v_1 + \dots + c_nv_n = 0$ which further implies that c_1, c_2, \dots, c_n | | Therefore, H is a subgroup of Geometrian a , then a , $a^{-1} \in K$. Now, shows that H is | 1 | | the smallest studgloup of a iv. Prove that $G = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \right\}$ is a group under matrix addition. Ans Closure: $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} + \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} a+c & b+d \\ -b-d & a+c \end{pmatrix} \in G$ Prove Associative Prove Identity is $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ Prove inverse of $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ is $\begin{pmatrix} -a & -b \\ b & -a \end{pmatrix}$ Q5. Attempt any FOUR questions from the following: (20) Attempt any the a linear transformation such that $\ker T = \{0\}$. Prove that if v_1, v_2, \ldots, v_n linearly independent then $T(v_1), T(v_2), \ldots, T(v_n)$ are linearly independent elements of linearly independent that $T(v_1), T(v_2), \ldots, T(v_n)$ are linearly independent elements of Since T is 1.t. it follows that $T(c_1v_1 + \ldots, c_nv_n) = 0$. As $\ker T = \{o\}$, this implies that $c_1v_1 + \ldots, c_nv_n = 0$ which further implies that c_1, c_2, \ldots, c_n | | Also, if K is a subgroup of X in X is a subgroup of X in X is a subgroup of X in X in X is a subgroup of X in | | | the smallest studgloup of a iv. Prove that $G = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \right\}$ is a group under matrix addition. Ans Closure: $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} + \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} a+c & b+d \\ -b-d & a+c \end{pmatrix} \in G$ Prove Associative Prove Identity is $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ Prove inverse of $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ is $\begin{pmatrix} -a & -b \\ b & -a \end{pmatrix}$ Q5. Attempt any FOUR questions from the following: (20) Attempt any the a linear transformation such that $\ker T = \{0\}$. Prove that if v_1, v_2, \ldots, v_n linearly independent then $T(v_1), T(v_2), \ldots, T(v_n)$ are linearly independent elements of linearly independent that $T(v_1), T(v_2), \ldots, T(v_n)$ are linearly independent elements of Since T is 1.t. it follows that $T(c_1v_1 + \ldots, c_nv_n) = 0$. As $\ker T = \{o\}$, this implies that $c_1v_1 + \ldots, c_nv_n = 0$ which further implies that c_1, c_2, \ldots, c_n | | $a^n, a^{-n} = (a^n)$ and a^n and a^n are a^n | 3 | | Ans Closure: $\binom{a}{-b} \binom{b}{a} + \binom{c}{-d} \binom{d}{c} = \binom{a+c}{-b-d} \binom{b+d}{a+c} \in G$ Prove Associative Prove Identity is $\binom{0}{0} \binom{0}{0}$ Prove inverse of $\binom{a}{-b} \binom{a}{a}$ is $\binom{-a}{b-a}$ Q5. Attempt any FOUR questions from the following: (20) | | | | | Ans Closure: $\binom{a}{-b} \binom{b}{a} + \binom{c}{-d} \binom{d}{c} = \binom{a+c}{-b-d} \binom{b+d}{a+c} \in G$ Prove Associative Prove Identity is $\binom{0}{0} \binom{0}{0}$ Prove inverse of $\binom{a}{-b} \binom{a}{a}$ is $\binom{-a}{b-a}$ Q5. Attempt any FOUR questions from the following: (20) | | $((a \ b), a \ b \in \mathbb{R})$ is a group under matrix addition. | | | Ans Closure: $\binom{a}{-b} \binom{b}{a} + \binom{c}{-d} \binom{d}{c} = \binom{a+c}{-b-d} \binom{b+d}{a+c} \in G$ Prove Associative Prove Identity is $\binom{0}{0} \binom{0}{0}$ Prove inverse of $\binom{a}{-b} \binom{a}{a}$ is $\binom{-a}{b-a}$ Q5. Attempt any FOUR questions from the following: (20) | iv. | Prove that $G = \{(-b, a), a, b \in A\}$ | | | Prove Associative $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ Prove Identity is $\begin{pmatrix} 0 & 0 \\ -b & a \end{pmatrix}$ is $\begin{pmatrix} -a & -b \\ b & -a \end{pmatrix}$. Prove inverse of $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ is $\begin{pmatrix} -a & -b \\ b & -a \end{pmatrix}$. Attempt any FOUR questions from the following: (20) Let $T: V \to W$ be a linear transformation such that $\ker T = \{0\}$. Prove that if v_1, v_2, \dots, v_n linearly independent then $T(v_1), T(v_2), \dots, T(v_n)$ are linearly independent elements of linearly independent elements of Since T is i.t. it follows that $T(c_1v_1 + \dots + c_nv_n) = 0$. As $\ker T = \{0\}$, this implies that $c_1v_1 + \dots + c_nv_n = 0$ which further implies that $c_1v_2 + \dots + c_nv_n = 0$ which further implies that $c_1v_2 + \dots + c_nv_n = 0$ which further implies that $c_1v_2 + \dots + c_nv_n = 0$ which further implies that $c_1v_2 + \dots + c_nv_n = 0$ are i.i. | Ì | | 1 | | Prove Associative $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ Prove Identity is $\begin{pmatrix} 0 & 0 \\ -b & a \end{pmatrix}$ is $\begin{pmatrix} -a & -b \\ b & -a \end{pmatrix}$. Prove inverse of $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ is $\begin{pmatrix} -a & -b \\ b & -a \end{pmatrix}$. Attempt any FOUR questions from the following: (20) Let $T: V \to W$ be a linear transformation such that $\ker T = \{0\}$. Prove that if v_1, v_2, \dots, v_n linearly independent then $T(v_1), T(v_2), \dots, T(v_n)$ are linearly independent elements of linearly independent elements of Since T is i.t. it follows that $T(c_1v_1 + \dots + c_nv_n) = 0$. As $\ker T = \{0\}$, this implies that $c_1v_1 + \dots + c_nv_n = 0$ which further implies that $c_1v_2 + \dots + c_nv_n = 0$ which further implies that $c_1v_2 + \dots + c_nv_n = 0$ which further implies that $c_1v_2 + \dots + c_nv_n = 0$ which further implies that $c_1v_2 + \dots + c_nv_n = 0$ are i.i. | } | $b (c d) (a+c b+d) \in G$ | l | | Prove Associative $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ Prove Identity is $\begin{pmatrix} 0 & 0 \\ -b & a \end{pmatrix}$ is $\begin{pmatrix} -a & -b \\ b & -a \end{pmatrix}$. Prove inverse of $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ is $\begin{pmatrix} -a & -b \\ b & -a \end{pmatrix}$. Attempt any FOUR questions from the following: (20) Let $T: V \to W$ be a linear transformation such that $\ker T = \{0\}$. Prove that if v_1, v_2, \dots, v_n linearly independent then $T(v_1), T(v_2), \dots, T(v_n)$ are linearly independent
elements of linearly independent elements of Since T is i.t. it follows that $T(c_1v_1 + \dots + c_nv_n) = 0$. As $\ker T = \{0\}$, this implies that $c_1v_1 + \dots + c_nv_n = 0$ which further implies that $c_1v_2 + \dots + c_nv_n = 0$ which further implies that $c_1v_2 + \dots + c_nv_n = 0$ which further implies that $c_1v_2 + \dots + c_nv_n = 0$ which further implies that $c_1v_2 + \dots + c_nv_n = 0$ are i.i. | - — Ā | This Closure: $\begin{pmatrix} a & b \\ b & a \end{pmatrix} + \begin{pmatrix} c & c \\ -d & c \end{pmatrix} = \begin{pmatrix} -b - d & a + c \end{pmatrix}$ | | | Prove inverse of $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ is $\begin{pmatrix} -a & -b \\ b & -a \end{pmatrix}$ Q5. Attempt any FOUR questions from the following: (20) Attempt any FOUR questions from the following: (20) Let $T: V \to W$ be a linear transformation such that $\ker T = \{0\}$. Prove that if v_1, v_2, \dots, v_n linearly independent then $T(v_1), T(v_2), \dots, T(v_n)$ are linearly independent elements of linearly independent then $T(v_1), T(v_2), \dots, T(v_n)$ are linearly independent elements of Since T is i.t. it follows that $T(c_1v_1 + \dots + c_nv_n) = o$. As $\ker T = \{o\}$, this implies that $c_1v_1 + \dots + c_nv_n = o$ which further implies that c_1, c_2, \dots, c_n | 1 | | \ ' | | Prove inverse of $(\underline{b} \underline{a})^{tot} \underline{b} \underline{-a}^{tot}$ O5. Attempt any FOUR questions from the following: (20) (20) (20) (21) (21) (22) (22) (23) (24) (25) (26) (27) (27) (27) (28) (28) (29) (20) (20) (20) (20) (20) (20) (20) (20) (20) (21) (21) (22) (22) (23) (24) (25) (26) (27) (27) (28) (28) (28) (29) (20) | | Prove Associative (0 0) | | | Prove inverse of $(\underline{b} - \underline{a})^{n}(\underline{b} - \underline{a})^{n}$ (20) O5. Attempt any FOUR questions from the following: a) Let $T: V \to W$ be a linear transformation such that $\ker T = \{0\}$. Prove that if v_1, v_2, \dots, v_n linearly independent then $T(v_1), T(v_2), \dots, T(v_n)$ are linearly independent elements of linearly independent then $T(v_1), T(v_2), \dots, T(v_n)$ are linearly independent elements of linearly independent that $C_1 V_1 + C_2 T V_2 + \dots + C_n T V_n = 0$ Ans Proof: Let $C_1 T V_1 + C_2 T V_2 + \dots + C_n V_n = 0$ which further implies that $C_1 V_1 + \dots + C_n V_n = 0$ where $C_1 V_1 + \dots + C_n V_n = 0$ where | | Prove Identity is (0 0) | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | Q5. Attempt any FOUR questions from the following: (20) a) Let T: V → W be a linear transformation such that kerT = {0}. Prove that if v₁, v₂v_n linearly independent then T(v₁), T(v₂)T(v_n) are linearly independent elements of independent | 1 | $\frac{1}{a}$ inverse of $\begin{pmatrix} a & b \\ b & -a \end{pmatrix}$ | | | Q5. Attempt any FOUR questions from the following: a) Let T: V → W be a linear transformation such that kerT = {0}. Prove that if v₁, v₂v_n linearly independent then T(v₁), T(v₂)T(v_n) are linearly independent elements of elem | | Prove liverse of $(-b - a)$ | | | a) Let T: V → W be a linear transformation such that kerT = {0}. Prove that if v₁, v₂v_n linearly independent then T(v₁), T(v₂)T(v_n) are linearly independent elements of elements of linearly indep | | (20) | | | a) Let T: V → W be a linear transformation such that kerT = {0}. Prove that if v₁, v₂v_n linearly independent then T(v₁), T(v₂)T(v_n) are linearly independent elements of elements of linearly indep | 05. | Attempt any FOUR questions from the restaurant and | | | Inearly independent then $T(v_1)$, $T(v_2)$ | 1 | $T_{-}(0)$ Prove that if V_1, V_2, \dots | v_n are | | Inearly independent then $T(v_1)$, $T(v_2)$ | | $T \cdot V \setminus W$ be a linear transformation such that $\ker I = \{0\}$. The variable element | ts of W | | Ans Proof: Let $c_1Tv_1 + c_2Tv_2 + \dots + c_nv_n = 0$. As ker $T = \{o\}$, this Since T is i.t. it follows that $T(c_1v_1 + \dots + c_nv_n) = 0$. As ker $T = \{o\}$, this implies that $c_1v_1 + \dots + c_nv_n = 0$ which further implies that $c_1v_1 + \dots + c_nv_n = 0$ which further implies that $c_1v_1 + \dots + c_nv_n = 0$ which further implies that $c_1v_1 + \dots + c_nv_n = 0$ implies that $c_1v_1 + \dots + c_nv_n = 0$ which further implies that $c_1v_1 + \dots + c_nv_n = 0$ which further implies that $c_1v_1 + \dots + c_nv_n = 0$ which further implies that $c_1v_1 + \dots + c_nv_n = 0$ implies that $c_1v_1 + \dots + c_nv_n = 0$ which further implies that $c_1v_1 + \dots + c_nv_n = 0$ implies that $c_1v_1 + \dots + c_nv_n = 0$ which further implies that $c_1v_1 + \dots + c_nv_n = 0$ implies that $c_1v_1 + \dots + c_nv_n = 0$ which further implies that $c_1v_1 + \dots + c_nv_n = 0$ implies that $c_1v_1 + \dots + c_nv_n = 0$ implies that $c_1v_1 + \dots + c_nv_n = 0$ implies that $c_1v_1 + \dots + c_nv_n = 0$ implies that $c_1v_1 + \dots + c_nv_n = 0$ implies that $c_1v_1 + \dots + c_nv_n = 0$ implies that $c_1v_1 + \dots + c_nv_n = 0$ in the first $c_1v_1 + \dots + c_nv_n = 0$ in the first $c_1v_1 + \dots + c_nv_n = 0$ implies that $c_1v_1 + \dots + c_nv_n = 0$ in the first $c_1v_1 + \dots + c_nv_n = 0$ int | a) | Let $T: V \to V$ be a fine $T(v_n)$ are linearly independent element. | | | Ans Proof: Let $c_1Tv_1 + c_2Tv_2 + \dots + c_nv_n = 0$. As ker $T = \{o\}$, this Since T is i.t. it follows that $T(c_1v_1 + \dots + c_nv_n) = 0$. As ker $T = \{o\}$, this implies that $c_1v_1 + \dots + c_nv_n = 0$ which further implies that $c_1v_1 + \dots + c_nv_n = 0$ which further implies that $c_1v_1 + \dots + c_nv_n = 0$ which further implies that $c_1v_1 + \dots + c_nv_n = 0$ implies that $c_1v_1 + \dots + c_nv_n = 0$ which further implies that $c_1v_1 + \dots + c_nv_n = 0$ which further implies that $c_1v_1 + \dots + c_nv_n = 0$ which further implies that $c_1v_1 + \dots + c_nv_n = 0$ implies that $c_1v_1 + \dots + c_nv_n = 0$ which further implies that $c_1v_1 + \dots + c_nv_n = 0$ implies that $c_1v_1 + \dots + c_nv_n = 0$ which further implies that $c_1v_1 + \dots + c_nv_n = 0$ implies that
$c_1v_1 + \dots + c_nv_n = 0$ which further implies that $c_1v_1 + \dots + c_nv_n = 0$ implies that $c_1v_1 + \dots + c_nv_n = 0$ implies that $c_1v_1 + \dots + c_nv_n = 0$ implies that $c_1v_1 + \dots + c_nv_n = 0$ implies that $c_1v_1 + \dots + c_nv_n = 0$ implies that $c_1v_1 + \dots + c_nv_n = 0$ implies that $c_1v_1 + \dots + c_nv_n = 0$ in the first $c_1v_1 + \dots + c_nv_n = 0$ in the first $c_1v_1 + \dots + c_nv_n = 0$ implies that $c_1v_1 + \dots + c_nv_n = 0$ in the first $c_1v_1 + \dots + c_nv_n = 0$ int | 1 | linearly independent then $I(v_1), I(v_2), \dots$ | | | Since T is 1.t. it follows that $C_1v_1 + \dots + C_nv_n = 0$ which further implies that $c_1v_1 + \dots + c_nv_n = 0$ which further implies that $c_1v_1 + \dots + c_nv_n = 0$ which further implies that $c_1v_1 + \dots + c_nv_n = 0$ which further implies that $c_1v_1 + \dots + c_nv_n = 0$ implies that $c_1v_1 + \dots + c_nv_n = 0$ which further implies that $c_1v_1 + \dots + c_nv_n = 0$ implies that $c_1v_1 + \dots + c_nv_n = 0$ implies that $c_1v_1 + \dots + c_nv_n = 0$ implies that $c_1v_1 + \dots + c_nv_n = 0$ which further implies that $c_1v_1 + \dots + c_nv_n = 0$ in +$ | ├ | Proof: Let $c_1 T v_1 + c_2 T v_2 + \dots + c_n T v_n = 0$ | | | implies that $c_1v_1 + \dots + c_nv_n = 0$. Then are l.i. | Ans | The follows that $T(c_1v_1 + \ldots + c_nv_n) = 0$. As ker $T = \{v\}$, thus | | | implies that $c_1v_1 + \dots + c_nv_n = 0$. Then are l.i. | \ | Since T is i.t. it to now a man c_1 and c_2 which further implies that c_1, c_2, \ldots, c_n | | | 10 at 12 170 170 170 1 170 1 1 1 1 1 1 1 1 1 1 1 | 1 | 1 · · · · · · · · · · · · · · · · · · · | | | are all zero, proving that 101, 102, | 1 | are all zero, proving that Tv_1, Tv_2, \dots, Tv_n are i. | | | $T \cdot \mathbb{P}^2 \rightarrow \mathbb{R}^2$ such that $I(3,1) \cdot (2,1)$ | | $T: \mathbb{R}^2 \to \mathbb{R}^2$, such that $T(3, 1) = (2, -4)$ and | | | b) Find the map $T: \mathbb{R}^n \to \mathbb{R}^n$, $T(1, 1) = (0, 2)$ | (b) | Find the map 1 · 22 | | | / | | 1 | |-------|--|-----------| | Ans | (x,y) = a(3,1) + b(1,1) | 1 | | • | $\Rightarrow 3a+b=x, a+b=y \Rightarrow a=\frac{x-y}{2}, b=\frac{3y-x}{2}$ | 2 | | ! | $(x,y) = \left(\frac{x-y}{2}\right)(3,1) + \left(\frac{3y-x}{2}\right)(1,1)$ | 1 | | | $T(x,y) = \left(\frac{x-y}{2}\right)T(3,1) + \left(\frac{3y-x}{2}\right)T(1,1)$ | 1 | | | $T(x,y) = \left(\frac{x-y}{2}\right)(2,3) + \left(\frac{3y-x}{2}\right)(1,4)$ | | | | =(x-y,5y-3x) | | | (c) | Check whether the set $\{(2,0,1), (4,1,-1), (-1,0,2)\}$ is linearly dependent or independent using | 5 | | Ans | determinants. Columns of A are linearly dependent iff $\det A = 0$ | 2 | | 7,113 | $\det\begin{pmatrix} 2 & 4 & -1 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix} = 23 \neq 0$ | | | | $ \begin{vmatrix} \det \begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 2 \end{vmatrix} = 23 \neq 0 $ | 2 | | | $\{(2,0,1), (4,1,-1), (-1,0,2)\}$ is linearly independent | <u> 1</u> | | d) | Find Rank of the matrix $A = \begin{pmatrix} 1 & 3 \\ 0 & -1 \\ 3 & 4 \end{pmatrix}$. What can you say about the rank of the matrix B which | h is | | | obtained from A by multiplying 2^{nd} row of A by 3? Number of linearly independent columns of $A = 2$ | 2 | | Ans | .Rank A=7 | | | | We know that rank of the matrix does not change by applying any of the row or column | 2 | | | operations on it. \therefore Rank of the matrix B which is obtained from A by multiplying 2^{nd} row of A by 3 is also equals 2. | 1 | | e) | Define the order of an element a of a group G and show that order $(a^{-1}) = \operatorname{order}(a)$ | | | Ans | The order of an element a of a group is the smallest positive integer m such that $a^m =$ | Τ- | | \ \ | e, where edenotes the identity element of the group. | 1 | | | If no such mexists, a is said to have infinite order.
If, $a^n = e$, then repeated multiplication by $a^{-1} - n$ times gives | ' | | | $(a^{-1})^n = e$. This shows that if a is of finite order than so is a^{-1} with order $(a^{-1}) \le e$. | | | | order(a).
//ly, $:(a^{-1})^{-1} = a$, therefore we see that if a^{-1} is of finite order than so is $a = (a^{-1})^{-1}$ with | | | | $\operatorname{order}(a) \leq \operatorname{order}(a^{-1})$ Whence, $\operatorname{order}(a^{-1}) = \operatorname{order}(a)$, in this case. | 1 | | | Also, if a is of infinite order then so is a^{-1} (for if a^{-1} is of finite order then again | 2 | | | we can as above that a is also of finite order.) //ly, $\because (a^{-1})^{-1} = a$, therefore if a^{-1} is of infinite order then so is a . | | | | Thus botha and a^{-1} are of infinite order or both are of finite order with | | | | $order(a^{-1}) = order(a).$ | _ | | _ | This proves the result. | 2 | | f | Show that $H = \{\overline{1}, \overline{7}, \overline{9}, \overline{23}\}$ modulo 40 is a subgroup of $U(40)$. | | | 1 | <i>つ</i> ` | |---|------------| | (| 5 | | | | |) (|) | | 1 | | |----------|---|---|---|---| | <u>/</u> | / | Since $(\overline{1}, \overline{40}) = 1, (\overline{7}, \overline{40}) = 1, (\overline{9}, \overline{40}) = 1$ and $(\overline{23}, \overline{40}) = 1$, | 1 | | | | | H is a subset of $U(40)$. | 2 | | | | | Composition table | i | | | 1 | | Closure property, Associative law and Holding | | \ | | | | It itself is a group under multiplication mount | | | | 1 | | Hence, His a subgroup of $U(40)$. | | | | | Ĺ | 110tow, Swann | | |