

O.P. code= 54960

[Total Marks: 100]

Note: (i) All questions are compulsory. the right indicate marks for respective parts.

(it) Figures to

Q.1	Choose	e correct alternative in each of the followi	ng	(20)	
i.	$T:\mathbb{R}^2$	$T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation if $\forall u, v \in V, \alpha, \beta \in \mathbb{R}$, then			
	(a)	$\overline{}$			
	(c)	$T(\alpha u + \beta v) = \alpha T(u) \cdot \beta T(v)$	(d)	None of the above	
_	Ans	a			
ii.	If $T:$	$U \rightarrow V$ is a linear transformation then			
	(a)	T(0) = 0	(b)	$T(-u) = -T(u), \forall u \in U$	
	(c)	$T(u_1 - u_2) = T(u_1) - T(u_2)$ $\forall u_1, u_2 \in U$	(d)	All of these.	
_	Ans	4			
iii.	Which	of the following is a linear transformation	n fron	n R ² to R ² ?	
	(a)	T(x,y)=(xy,y)	(D)	$\frac{I(x,y)-(x+1,y+1)}{(x+1,y+1)}$	
	(c)	T(x,y)=(x+y, x-y)	(d)	All the above	
	Ans	С			
iv.	Let A	be a $m \times n$ matrix then			
	(a)	Rank A = number of non-zero columns	(b)	Rank A= number of linearly independent	
	(a)	of A	\ \	rows of A	
		OLA			
	(c)	Rank A = number of non-zero rows of	(d)	None of these	
	(0)	A	<u> </u>	<u> </u>	
	Ans	h	<u> </u>		
-υ.	1	$\frac{1}{\sqrt{1}} \frac{0}{0} \frac{0}{0}$			
ν.	Let E	$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ then } E^{-1} \text{ is}$			
	<u> </u>	(0 0 1/	(b)	(1 0 0)	
	(a)	1/1 0 01	(0)	$\begin{pmatrix} 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	
		$\begin{bmatrix} 0 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$		0 0 1/	
	(c)	$\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & \frac{1}{3} & 0 \end{pmatrix}$	(d)	$\sqrt{1}$ 0 0	
	(0)	$\begin{pmatrix} 0 & 1/2 & 0 \end{pmatrix}$	1	$\{0^{-1}/3, 0\}$	
				0 0 1/	
	A 110	(c) 1/			
آد.	Ans	A be the matrix with If \tilde{A} is Adjoint(A) the	en inv	erse of A is given by	
vi.		~	(b)	$\det(\tilde{A}).\tilde{A}$	
 	(a)	det(A).Ã	$\frac{\langle \mathbf{d} \rangle}{\langle \mathbf{d} \rangle}$		
	(c)	Ā/det(A)	(u)	71.11	
	Ans	(c)		$a_{nn} AV = h$ has a solution if and only if	
vii	i. A m	(c) $\times n$ non-homogeneous system of linear c	quation	Rank A > Rank[A b]	
	(a)	Rank A = Rank[A]b]	(0)	Rather It > Restriction	
	(c)	$Rank\ A < Rank[A b]$	(d)	none of these	
	Ans				

_	_	
(2	1
/		٠.
		_

viii.	Whic	ch of the following groups is non-abelian		
	(a)	V_4	(b)	S_3
	(c)	C_{13}	(d)	None of the above
	Ans	(b)		
ix.	The i	nverse of i in the multiplicative group $\{-1\}$	l,1, i, -	-i} is
	(a)	1	(b)	i
_	(c)	-i	(d)	-1
	Ans	(c)		
х.	Let C	denote the set of odd integers. Then		
	(a)	O forms a group under the operation of addition	(b)	O forms a group under the operation of multiplication
	(c)	O does not forms a group under the operation of addition	(d)	None of the above
	Ans	(c)		<u> </u>
Q2.	Atten	npt any ONE question from the following:		(08)
a)	i.	State and prove Rank-Nullity Theorem.		

	2	\
\	9	_

Ans	Proof : We have $T:V\to W$, be a linear transformation, ker $T\subsetneq V$ is a subspace of V .		
	Let dim $V = n$, dim ker $T = r$, dim $W = m$		
	Let $B = \{u_1, u_2, \dots, u_r\}$ be basis of ker T As ker T is subspace of V, B is a linearly independent subset of V and hence can be extended to a basis of V.		
	Let $B_1 = \{u_1, u_2, \dots, u_r, u_{r+1}, \dots, u_n\}$ be a basis of V, obtained by extension of B.		
	Let $w_i = T(V_{r+i}), \forall i = 1, \dots, n-r$.	1	
	Claim: $B_2 = \{w_1, w_2, \dots, w_{n-r}\}$ forms a basis of I_mT		
]	Let us prove first. B ₂ is linearly independent	1	
	Let $a_1, a_2, \dots a_{n-r}$ be scalars such that		
	$a_1w_1 + a_2w_2 + \cdots + a_{n-r}w_{n-r} = 0$		
	But $T(u_{r+1}) = w_1, T(u_{r+2}) = w_2, \cdots T(u_n) = w_{n-r}$		
	$\therefore a_{1}T(u_{r+1}) + a_{2}T(u_{r+2}) + \cdots + a_{n-r}T(u_{n}) = 0$	1	
	$T(a_1u_{r+1} + a_2u_{r+2} + \cdots + a_{n-r}u_n) = 0$		
	$\Rightarrow T\left(\sum_{i=1}^{n-r} a_i u_{r+i}\right) = 0$	1	
	n – r		
	$\Rightarrow \sum a_i u_{r+i} \in \ker T$		
	i = 1		
	$\Rightarrow \exists b_1, b_2, \dots, b_r \text{ scalar s.t.}$		
1	n-r r		
	$\sum a_i u_{r+i} = \sum b_j u \cdot \cdots \text{ as B is basis of ker T}$	1	
	i=1 $i=1$		l
	$\Rightarrow b_1 u_1 + b_2 u_2 + \cdots + b_r u_r - (a_1 u_{r+1} + \cdots + a_{n-r} u_n) = 0$		
	As $B_1 = \{u_1, u_2, \dots, u_r, u_{r+1}, \dots u_n\}$ is lin independent		
	\Rightarrow b ₁ = b ₂ = b _r = 0 and	1	
		İ	1

	$a_1 = a_2 = a_{n-r} = 0$	Т
	$\Rightarrow \{w_1, w_2, \dots, w_{n-r}\} \text{ is linearly independent } \cdots (1)$	1
	Claim: $\{w_1, w_2, \dots, w_{n-r}\}$ spans $I_m(T)$ Let $w \in I_mT$	
	$\Rightarrow \exists v \in V \text{ such that } T(v) = w.$	
	As $B_1 = \{u_1, u_2, \dots, u_r, u_{r+1}, u_{r+2}, \dots u_n\}$ is a basis of V . $\Rightarrow \exists b_1, b_2, \dots, b_n \in \mathbb{R}$ such that	1
	$v = b_1 u_1 + b_2 u_2 + \cdots + b_r u_r + b_{r+1} u_{r+1} + \cdots + b_n u_n$ As T is linear,	
	$T(v) = T(b_1u_1 + \cdots + b_ru_r) + T(b_{r+1}, u_{r+1} + \cdots + b_nu_n)$	
	$= b_{t}T(u_{1}) + b_{2}T(u_{2}) + \cdots + b_{r}T(u_{r}) + b_{r} + 1T(u_{r+1}) + \cdots + b_{n}T(u_{n}) + \cdots$ as T is linear	
	$T(v) = b_{r+1}T(u_{r+1}) + b_{r+2}T(u_{r+2}) + \cdots + b_nT(u_n)$ as $u_1, u_2, \dots, u_r \in \ker T$	
	$\Rightarrow T(v) = b_{r+1} w_1 + b_{r+2} w_2 + \cdots + b_n w_{n-1}$	
	$\Rightarrow w = b_{r+1}w_1 + b_{r+2}w_2 + \cdots + b_n w_n,$ $\Rightarrow w \in \text{span} \{w_1, \cdots, w_{n-r}\}$	
	$\Rightarrow \text{If } w \in I_m T \Rightarrow w \in \text{span } \{w_1, w_2, \cdots, w_{n-r}\}$	
	$\Rightarrow \{w_1, w_2, \dots, w_{n-r}\} \text{ spans } I_m T, \dots \text{ (II)}$ $\Rightarrow \{w_1, w_2, \dots, w_{n-r}\} \text{ forms a basis of } Im T \dots \text{ From (I) and (II)}$	
	$\therefore \dim (I_m T) = n - r$	
	$\dim (\ker T) = r$	
	$\dim v = n = \dim (l_m T) + \dim (\ker T) = r + n - r.$ $\therefore \dim (V) = \dim (\ker T) + \dim (l_m T)$	
	as $n = r + n - r$ Rank nullity theorem is verified.	
ii.	Show that the vector space of all polynomials in x of degree less than or equal to n is isomorphic to \mathbb{R}^{n+1}	<u> </u>

	2	
`		_/

Ans	i) $P_{x}[x] = \sqrt[3]{a_0 + a_1 x + a_2 x^2 + a_3 x} + a_4 x^2 + a_5 x^3 + a_$	
	areig.	
	[R. "+" = \$ (Ac , A, A, + + +) : Dec, A, + n & in?	1
	Define T:1R" -> Pn[x]	1
	$as T(a_0, a_1,, a_n) = a_0 + a_1 x + a_1 x + + a_n x + + a_n x$	
	Ker T = {(a0, a1, -an): 00 + 2, x - 42x x = 5	
	$= \begin{cases} (\alpha_0, \alpha_1, -\alpha_n) : \alpha_0 = c, \alpha_1 = c, \dots, \alpha_n = c \end{cases}$	1
	i. Ket is one-one 1	
	Also if bo+b, x++b-x & P. [x] . s my	1
	T(bo, b, bn) = bo + b, x + b, x	
	T is ento (t)	
		1
	Also $I(\alpha \bar{a} + \beta \bar{b})$ where $a = [a_0, -a_n]$	
	= T ((01 x0+ Bbo, x2, +Bb, 20, +Bbn))	1
	= (xac TBbo) x + (xa, TBb,) x + (Ta, +6b,) x	
	Bbn x t pb, x' + + pbnx"	1
	= ~ (ao + a, x + -+an x") = 5 (bc + bx + + bn x")	
	$= T(\bar{a}) + BT(\bar{b})$	
	Tie histy Day and large a in-	
	· Pr [x] 일 [R"+!	
Attem	pt any TWO questions from the following: (12)	
i.		
	F(x,y,z) = (x + y - 2z, x + 2y + z, 2x + 2y - 3z).	ļ
Ans	Let $(x, y, z) \in ker T$ so that	1
	x + y - 2z = 0, x + 2y + z = 0, 2x + 2y - 3z = 0	
	Attem	$[R]^{n+1} = \{ A_0, A_0, \dots A_m \} : \{ A_0, A_1, \dots A_n \in \mathbb{R}^n \}$ $[R]^{n+1} = \{ A_0, A_1, \dots A_m \} : \{ A_0, A_1, \dots A_n \in \mathbb{R}^n \}$ $As T(a_0, a_1, \dots a_n) : a_0 + a_1x^2 + a_nx^2 + a_n$

	_	
	`	
	K	
	U	
5		

	The matrix corresponding to this system $\begin{pmatrix} 1 & 1 & -2 \\ 1 & 2 & 1 \\ 2 & 2 & -3 \end{pmatrix}$ whose row reduced form is	2
	,	2
	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}. \text{ Thus } x = y = z = 0 \Rightarrow ker F = \{0\}$	1
	(0 0 1) Therefore F is non-singular.	
ii.	If $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that $T(x, y, z) = (x + 2y - z, y + z, x + y - 2z)$. Find bas and the dimension of Ker T .	is
Ans	Let $(x, y, z) \in ker T$ so that $x + 2y - z = 0, y + z = 0, x + y - 2z = 0$	I
	The matrix corresponding to this system $\begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 1 & 1 & -2 \end{pmatrix}$ whose row reduced form is	2
	$\begin{pmatrix} 1 & 1 & -2 \end{pmatrix}$	1
	$\begin{pmatrix} 1 & 0 & -3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. Thus putting $z = t$, we get $y = -t$, and $x = 3t$	1
	$\Rightarrow ker F = \{t(3,-1,1) / t \in \mathbb{R}\}$. Therefore the basis of $ker F$ is $(3,-1,1)$ and is	1
iii.	of dimension 1. Show that any n-dimensional real vector space is isomorphic to \mathbb{R}^n .	!
Ans	Let x_1, x_2, \dots, x_n be a basis of V of dim n. Therefore for	1
	$x \in V, x = \sum_{i} c_{i} x_{i} \qquad \forall c_{i} \in \mathbb{R}$	1
	Thus a LT is defined by $T(x) = (c_1, \dots, c_n)$ is one-one.	2
	Since Dim $V = n = \dim \mathbb{R}^n$, T is onto. Therefore T is invertible. Therefore $V \cong \mathbb{R}^n$.] [
iv.	$P_3[\mathbb{R}]$ denote the vector space of all polynomials over \mathbb{R} of degree 3 or less an	
	$D(f(x)) = \frac{df(x)}{dx}, \forall f(x) \in P_3[\mathbb{R}]$ denote the differentiation mapping. Let	
	$B = \{1, x, x^2, x^3\}$ be the basis. Find $[m(D)]_B^B$.	
Ans	$Dv_1 = 0 = 0v_1 + 0v_2 + 0v_3 + 0v_4$	
	$Dv_2 = 1 = 1v_1 + 0v_2 + 0v_3 + 0v_4$	4
	$Dv_3 = 2x = 0v_1 + 2v_2 + 0v_3 + 0v_4$	
	$Dv_4 = 3x^2 = 0v_1 + 0v_2 + 3v_3 + 0v_4$	
		2

		\
		`
	7)
•	_	

	T		
		$\Rightarrow [m(D)]_{B}^{B} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$	
03	4.4		
Q3.	Ante	mpt any ONE question from the following: (08)	
a)	i.	Show that elementary row operations do not change the row rank of $A \in M_n(\mathbb{R})$.	
	Ans	Let $A \in M_n(\mathbb{R})$. Let $A = \begin{pmatrix} A_1 \\ A_2 \\ \vdots \\ A_n \end{pmatrix}$ where A_i is ith row of A . Let $A_1, A_2, \dots, A_i, \dots A_n >$ denote the row space of A . B be the marix obtained from A by applying one of the following row operation. Elementary operation of 1st type: Let B be the matrix obtained from A by applying row operation $R_i \leftrightarrow R_j$. Row rank of $B = \dim A_1, A_2, \dots, A_j, \dots, A_l, \dots A_n >$ $A_1, A_2, \dots, A_l, \dots, A_l, \dots, A_l >$ $A_1, A_2, \dots, $	2
		Elementary operation of 2^{nd} type: Let B be the matrix obtained from A by applying row operation $R_i \leftrightarrow cR_i$ Row rank of $B = \dim < A_1, A_2,, cA_i,A_n >$ $= \dim < A_1, A_2,, A_i,A_n >$ $(\because < A_1, A_2,, cA_i,A_n > = < A_1, A_2,, A_i,A_n >)$ $= \text{Row rank of } A$	2
		Elementary operation of 3^{rd} type: Let B be the matrix obtained from A by applying row operation $R_j \leftrightarrow R_j + cR_i$ Row rank of $B = \dim < A_1, A_2,, A_i,, A_j + cA_i, A_n >$ $= \dim < A_1, A_2,, A_i,, A_j, A_n >$ $(:< A_1, A_2,, A_i,, A_j + cA_i, A_n > = < A_1, A_2,, A_i,, A_j, A_n >)$ = Row rank of A	2
		Elementary row operations do not change the row rank of matrix A.	2
	ii.	Let $A^1, A^2 \in \mathbb{R}^2$ and $c \in \mathbb{R}$. Show that I) $\det(A^1, A^2) = 0$ iff $\{A^1, A^2\}$ is linearly dependent. II) $\det(A^1 + cA^2, A^2) = \det(A^1, A^2)$.	

	-	
(' '	0	1
	4	,
•	` '''	

	An	s I) (⇒)	
		Given: $det(A^1, A^2) = 0$	
		T.P.T: $\{A^1, A^2\}$ is linearly dependent.	
	ŀ	Suppose $\{A^1, A^2\}$ is linearly independent	
ļ		$ \cdot \{A^2, A^2\}$ is the basis of \mathbb{R}^2	
		Let $E^1 = \alpha_1 A^1 + \alpha_2 A^2$ and $E^2 = \beta_1 A^1 + \beta_2 A^2$	
		$\det(E^{1}, E^{2}) = \det(\alpha_{1}A^{1} + \alpha_{2}A^{2}, \beta_{1}A^{1} + \beta_{2}A^{2})$ $= (\alpha_{1}\beta_{2} - \alpha_{2}\beta_{1})\det(A^{1}, A^{2})$	
		$= (a_1 p_2 - a_2 p_1) \det (A^2, A^2)$ = 0. which is a contradiction.	
		is a contradiction.	3
		(⇐)	
		Given: $\{A^1, A^2\}$ is linearly dependent.	
		$T.P.T: \det(A^1, A^2) = 0$	
		As $\{A^1, A^2\}$ is linearly dependent	
		$\therefore \text{ Let } A^2 = cA^1, c \neq 0, c \in \mathbb{R}$	
		$\det(A^1, A^2) = \det(A^1, cA^1)$	
		$= c \det(A^1, A^1)$	
		= 0	
		$dot(A^{1} + A^{2} + A^{2}) + cot + co$	3
		$\det(A^{1} + cA^{2}, A^{2}) = \det(A^{1}, A^{2}) + \det(cA^{2}, A^{2})$ $= \det(A^{1}, A^{2}) + \cot(A^{2}, A^{2})$	
		$= \det(A^1, A^2)$ $= \det(A^1, A^2)$	
ļ	 		2
			_!
Q3.	Atten	apt any TWO questions from the following: (12)	
,		140 questions from the following: (12)	
<i>b</i>)	i. —	/4 4 0	
		Define adjoint of a matrix. Find A^{-1} for $A = \begin{pmatrix} 1 & -1 & 2 \\ 4 & 0 & 6 \end{pmatrix}$ using adjoint.	
 	Ans		ŀ
	7113	For $A \in M_n(\mathbb{R})$,	
		Let A_{ij} be the matrix obtained from A by deleting its ith row and jth column Let $c_{ij} = (-1)^{i+j} \det A_{ij}$	1
		$C = (c_{ij})$ is called matrix of cofactors	1 1
		. 1// 1\	
		$aaj(A) := C^{1}$ Given matrix is $A = \begin{pmatrix} 1 & -1 & 2 \\ 4 & 0 & 6 \\ 0 & 1 & -1 \end{pmatrix}$	
ı		Given matrix is $A = \begin{pmatrix} 4 & 0 & 6 \end{pmatrix}$	2
,		(0 1 -1/	
		Matrix of cofactors is $C = \begin{pmatrix} -6 & 4 & 4 \\ 1 & -1 & -1 \end{pmatrix}$	1 1
		$\begin{pmatrix} 1 & 1 & -1 \\ -6 & 2 & 4 \end{pmatrix}$	2
		$Adi(A) = C^t = \begin{pmatrix} -6 & 1 & -6 \\ A & 1 & 2 \end{pmatrix}$	-
		$\begin{pmatrix} 4 & -1 & 2 \\ 4 & -1 & 4 \end{pmatrix}$	
	1	$\frac{1}{1} - \frac{1}{6} = \frac{1}{1} - \frac{1}{1} = \frac{1}$	
		Matrix of cofactors is $C = \begin{pmatrix} 0 & 1 & -1 \\ -6 & 4 & 4 \\ 1 & -1 & -1 \\ -6 & 2 & 4 \end{pmatrix}$ $Adj(A) = C^{t} = \begin{pmatrix} -6 & 1 & -6 \\ 4 & -1 & 2 \\ 4 & -1 & 4 \end{pmatrix}$ $A^{-1} = \frac{1}{\det A} Adj(A) = \frac{1}{-2} \begin{pmatrix} -6 & 1 & -6 \\ 4 & -1 & 2 \\ 4 & -1 & 4 \end{pmatrix}$	
		-\	1 1

	_	\
	Ω)
•	7	7
	/	1

			2
	ii.	Let $A = \begin{bmatrix} 1 & 0 \\ -5 & 2 \end{bmatrix}$, find elementary matrices E_1 , E_2 such that $E_2E_1A = I_2$.	<u> </u>
	Ans	$\begin{bmatrix} 1 & 0 \\ -5 & 2 \end{bmatrix} \xrightarrow{\frac{\kappa_2 - \kappa_2 + 3\kappa_1}{2}} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \xrightarrow{\frac{\kappa_2 - \kappa_2}{2} \kappa_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	3
			3
		<u> </u>	
	iii.	Let $A \in M_{m \times n}(\mathbb{R})$. Show that dimension of the solution space of the system of line equations $AX = 0$ equals $n - \operatorname{rank} A$	ar
	Ans	Define a linear transformation $T \colon \mathbb{R}^n \to \mathbb{R}^m \text{ such that } T(X) = AX$ $\therefore \text{ By rank nullity theorem}$ $n = \text{Rank } T + \text{nullity } T$	
		$\therefore \text{nullity } T = n - \text{Rank } T \dots (1)$	3
		Nullity $T = \text{Dim Ker } T$ $= Dim\{X \in \mathbb{R}^n T(X) = 0\}$ $= Dim\{\{X \in \mathbb{R}^n AX = 0\}$ = Dim of solution space of the system (AX = 0)(2)	3
	,	From (1) and (2) Dim of solution space of the system $(AX = 0) = n - \text{Rank } T$	
	iv.	Solve the following system of linear equations using Cramer's rule: x + y + z = 6, $2x - y + z = 3$, $4x - y - z = -1$	
	Ans	$x + y + z = 6$, $2x - y + z = 3$, $4x - y - z = -1$ The corresponding non-homogeneous system is $ \begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & 1 \\ 4 & -1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 6 \\ 3 \\ -1 \end{pmatrix} $	
		$x = \frac{\det\begin{pmatrix} 6 & 1 & 1\\ 3 & -1 & 1\\ -1 & -1 & -1 \end{pmatrix}}{\det\begin{pmatrix} 1 & 1 & 1\\ 2 & -1 & 1\\ 4 & -1 & -1 \end{pmatrix}} = \frac{10}{10} = 1$	2
			2

_		_
/	())
_		~

_	/- -	-,		
			$y = \frac{\det\begin{pmatrix} 1 & 6 & 1\\ 2 & 3 & 1\\ 4 & -1 & -1 \end{pmatrix}}{\det\begin{pmatrix} 1 & 1 & 1\\ 2 & -1 & 1\\ 4 & -1 & -1 \end{pmatrix}} = \frac{20}{10} = 2$ $z = \frac{\det\begin{pmatrix} 1 & 1 & 6\\ 2 & -1 & 3\\ 4 & -1 & -1 \end{pmatrix}}{\det\begin{pmatrix} 2 & -1 & 1\\ 2 & -1 & 1\\ 4 & -1 & -1 \end{pmatrix}} = \frac{30}{10} = 3$	2
 - -	Q4.	Atte	mpt any ONE question from the following: (08)	
	a)	i.	Define Group. For any positive integer n , Prove that \mathbb{Z}_n the set of residue classes monitorial n is a group under addition modulo n .	dulo
		Ans	Definition of Group	
			For any positive integer n , we have $\mathbb{Z}_n = \{\overline{0}, \overline{1}, \overline{2},, \overline{n-1}\}.$	2
1			Closure property:	
			Let $\bar{a}, \bar{b} \in \mathbb{Z}_n$	2
			By division algorithm, there exist unique integers q and r such that $a + b = nq + r$ where $0 \le r < n$.	
			!	
			$\therefore \overline{a+b} = \overline{r} \in \mathbb{Z}_n$	
			Associative law: Since addition is associative for real numbers,	1
			Associative law holds for \mathbb{Z}_n	
			Prove Identity: $e = \overline{0}$	1
			Prove Inverse: $\overline{n-a}$ is the inverse of \overline{a}	2
		li.	Define a subgroup of a group? Show that a nonempty subset H of G is a subgroup of a group G if and only if $ab^{-1} \in H, \forall a, b \in H$.	
		Ans	A subset H of a group G is a subgroup of G if and only if H is itself a group under the group operation of G .	2
			(\Rightarrow) Let H be a subgroup of G and H be a non-empty subset of G.	
		ļ	Let $a, b \in H$ then $b^{-1} \in H$ (: H is a subgroup of $G : H$ is a group. A every element of H has an inverse in H)	
			Now $\because a, b^{-1} \in H : ab^{-1} \in H$ ($\because H$ is a subgroup of $G : H$ is a group. $\therefore H$ is closed	3

1)		
		-	under multiplication)
			(\Leftarrow) Let $ab^{-1} \in H, \forall a, b \in H$.
			Now $\forall H \neq \phi$. \therefore let $a \in H$. $\therefore e = aa^{-1} \in H$. $\therefore H$ has multiplicative identity.
			Next, $a \in H \Rightarrow (\because e \in H) a^{-1} = ea^{-1} \in H$. \therefore every element of H has an inverse in H
			Also now, $a, b \in H \Rightarrow a, b^{-1} \in H \Rightarrow ab = a(b^{-1})^{-1} \in H$. $\therefore H$ is closed under multiplication.
	,		H is a subgroup of G.
	Q4.	Atter	t any TWO questions from the following: (12)
	$\frac{\sqrt{b}}{b}$	i.	In any group show that: (12)
			(p) the identity element is unique and
	Ì		(q) the inverse of every element is unique.
		Ans	(p) Let G be a group. Suppose that e and e_1 are both identity elements of G then to prove that $e = e_1$.
			Now, $ee_1 = e_1$ (: e is the identity element of G) Also, $ee_1 = e$ (: e_1 is the identity element of G)
	•		Thus, $e = e_1$, as required.
			(q) Let $x \in G$, then $\forall G$ is a group $\therefore x$ has an inverse.
			Now t.p.t. the inverse of x is unique.
	ļ		e. t.p.t. if y and y_1 are inverses of xthen $y = y_1$.
			multiplication is associative in G , $\therefore y(xy_1) = (yx)y_1$
			Now, y_1 is the inverse of $x_1 cdots LHS = y(xy_1) = ye = y_1$. Also, y_1 is the inverse of $y_2 cdots RHS = (yx)y_1 = ey_1 = y_1$.
			$y = y_1 \text{ as required.} $ 3
		ii.	Construct composition table of $G = \{\overline{5}, \overline{10}, \overline{15}, \overline{20}\}$ under multiplication modulo 40 and
			and order of all its elements.
	_	Ans	$G = \{\overline{5}, \overline{15}, \overline{25}, \overline{35}\}$
			\times_{40} $\overline{5}$ $\overline{15}$ $\overline{25}$ $\overline{35}$
			
			$\overline{5}$ $\overline{25}$ $\overline{35}$ $\overline{5}$ $\overline{15}$
			15 25 25 1F F

	2.5	دد	3	15	
15	35	25	15	5	
25	5	15	25	35	
35	15	5	35	25	
$ \begin{array}{r} \hline 25 \text{ is the} \\ \hline 5^2 = \overline{25} \\ \hline 15^2 = \overline{25} \\ \hline 35^2 = \overline{25} \end{array} $	∴ o(5	(5) = 2			

			_
	1		
\	t	つ	ì
1	•	\prec	
	_	_ `	

'	iii.	In a second Control of the control o	
1	111.	In a group G prove the following:	
		(p) If $(ab)^2 = a^2b^2$, $\forall a, b \in G$ then G is abelian.	
ļ		(q) If G is abelian then $(ab)^n = a^n b^n$, $\forall n \in \mathbb{N}$.	
	Ans	$(p) \forall a, b \in G, (ab)^2 = a^2b^2 \Rightarrow (ab)(ab) = (aa)(bb) \Rightarrow a(ba)b =$	
	-	$a(ab)b\Rightarrow (ba)b = (ab)b$, by LCL $\Rightarrow ba = ab$, by RCL.	
		∴G is abelian.	
İ		(q) We prove the result by induction on n .	2
		$n = 1$: $(ab)^1 = ab = a^1b^1$ is true.	
1	1	Assume by i.h. the result for $n = k$, then to prve the same for $n = k + 1$.	
		We have, $(ab)^{k+1} = (ab)^k (ab) = a^k b^k ab = a^{k+1} b^{k+1}$.	
		This completes the induction step and the proof.	
		_	
_	iv.	Let G be a group and $a \in G$. Prove that $N(a) = \{x \in G : ax = xa\}$ is a subgroup of	4
		$\int \int $	G.
	Ans	Let e be the identity of group G and $a \in G$.	
		Since $ae = ea, e \in N(a)$.	
		Hence, $N(a)$ is a non-empty subset of G .	1
		Consider any $x, y \in N(a)$: $ax = xa$ and $ay = ya$	١,
		Note $ay^{-1} = (y^{-1}y)ay^{-1} = y^{-1}(ya)y^{-1}$	2
		$= y^{-1}(ay)y^{-1} = y^{-1}a(yy^{-1}) = y^{-1}a$	2
	1	$\therefore a(xy^{-1}) = (ax)y^{-1} = (xa)y^{-1}$	
		$= x(ay^{-1}) = x(y^{-1}a) = (xy^{-1})a \qquad \therefore xy^{-1} \in N(a)$	2
	<u> </u>	Hence $N(a) = \{x \in G : ax = xa\}$ is a subgroup of G	
			_!
Q5.	Attem	pt any FOUR questions from the following: (20)	
		- ()	
a)	Prove	that if $T: V \to V'$ is a linear transformation then T is injective if and only if ker $T=$	
		T = T is a finear transformation then T is injective if and only if ker $T = T$	· {0}.
Ans	 		
, 1115	Pre	pof: Suppose T is injective and $x \in \ker T$.	
	Th	en $Tx = 0$. However $To = 0$. $\therefore Tx = To$ forcing x to be o. Thus	
	ker T	= fol] 1
	1102	- (o).	
	Co	nversely, suppose ker $T = \{o\}$.	1
	If 7	Tx = Ty, then since T is l.t. we have $T(x - y) = Tx - Ty = 0$, implying	
	that x	$-y \in \ker T$.	2
	i		1 1
		x-y=o or x=y.	1, 1
	Th	is proves that T is injective.	
<i>b</i>)		whether the following linear transformation is an isomorphism	
	$T \cdot R$	$\stackrel{\text{3}}{\to} \mathbb{R}^3, T(x, y, z) = (x + y, x - z, y + 2z)$	
	1 . ##	$\frac{-\sqrt{x}(x,y,z)}{(x,y,z)} = (x+y,x-z,y+2z)$	
Ans			
İ	Let (x	$(y,z) \in ker T$ so that	1
[x + 1	y = 0, x - z = 0, y + 2z = 0	
	' •	, -,·· ~ v,j, · <u>wa</u> — v	
			2

1		
[,	3)
1	<u></u>	

		
	The matrix corresponding to this system $\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$ whose row reduced form is	
	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Thus we get, $z = 0$, $y = 0$, and $x = 0 \Rightarrow ker F = \{0\}$. And dim $V = \dim W$.	1 1
	Therefore T is an isomorphism.	
c)	Define Rank of the Matrix. Find Rank of the matrix $\begin{pmatrix} 1 & 2 & 0 \\ 3 & 1 & 1 \\ 1 & -3 & 1 \end{pmatrix}$	
Ans	Rank A= Dimension of row space of A = number of linearly independent rows of A = Dimension of column space of A = number of linearly independent columns of A	2
	Observe that $R_3 = R_2 - 2R_1$:.number of linearly independent rows of $A = 2$ Rank $A=2$.	3
d)	For $A, B \in M_n(\mathbb{R})$, if A is invertible show that I) $\det(A^{-1}) = (\det A)^{-1}$ II) $\det(ABA^{-1}) = \det B$ III) $\det(A^tB^t) = \det A \cdot \det B$	
Ans	We know that $AA^{-1} = I$ $\therefore \det AA^{-1} = \det I$ $\therefore \det A \det A^{-1} = 1$ $\therefore \det A^{-1} = (\det A)^{-1}$	2
	$detABA^{-1} = detA. detB. detA^{-1}$ $= detA. detB. (detA)^{-1}$ $= detB$	2
	$det A^t B^t = det A^t det B^t$ $= det A. det B$	I
e)	List all elements of $U(15)$ and find their orders.	
Ans	$U(15) = \{\overline{1}, \overline{2}, \overline{4}, \overline{7}, \overline{8}, \overline{11}, \overline{13}, \overline{14}\}$ and $o(\overline{1}) = 1$; $o(\overline{4}) = o(\overline{11}) = o(\overline{14}) = 2$; $o(\overline{2}) = o(\overline{8}) = o(\overline{7}) = o(\overline{13}) = 4$.	1 4
f)	Let G be an abelian group then show that $H = \{g^2/g \in G\}$ is a subgroup of G.	

(14)		
Ans	Since $e = e^2 \in H$, H is a non-empty subset of G . Consider any $x, y \in H$. $\therefore x = g^2$ and $y = h^2$ for some $g, h \in G$. Then $xy^{-1} = g^2(h^2)^{-1} = g^2(h^{-1})^2 = ggh^{-1}h^{-1}$ $= gh^{-1}gh^{-1}$ since G is abelian $= (gh^{-1})^2$ where $gh^{-1} \in G$ since G is a group. $\therefore xy^{-1} \in H$ Hence, H is a subgroup of G .	

1 2

1