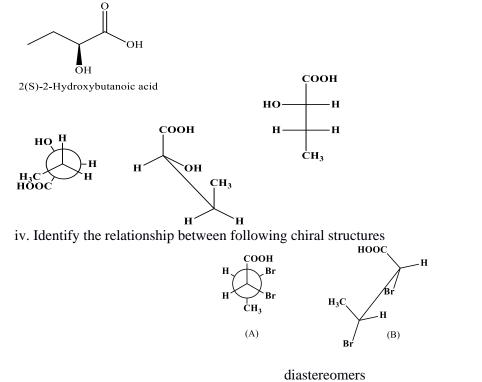
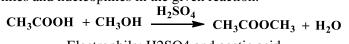

S. Y. B. Pharm.

Total Marks: 80


N.B.: 1. All questions are compulsory 2. Answer all sub questions together 3. Figures to right indicate full marks

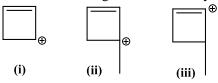
ii. Draw resonating structure of the following molecules

iii. Represent 2(S)-2-Hydroxybutanoic acid using Fischer and Newmann projection formulae.

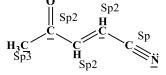


v. Write conjugate acid/base of the N,N,N-trimethylamine and chloroacetic acid

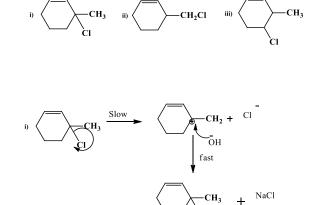
СН₃ H₂C CH₃


CICH_2COO⁻

vi. Identify the electrophiles and nucleophiles in the given reaction.

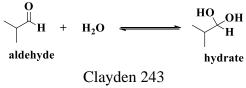

Electrophile: H2SO4 and acetic acid Nucleophile : Methanol

vii. Arrange the following carbocations in increasing order of stability & justify the same.



III more unstable than II and I. Most stable carbocation is II as it's a 3° carbocation

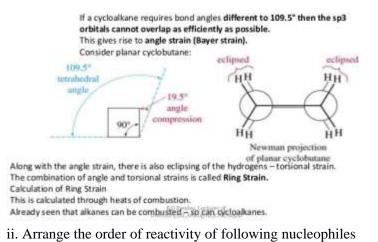
Q.2. i. Draw the molecular orbital energy diagram for acetone & Label the orbitals.[2M]ii. Identify the hybridization state of the underlined atom from the given molecule.[2M]


iii. List the following alkyl halides in decreasing order of S_N1 reactivity. Justify your answer.

Order of reactivity tertiary>secondary> primary alkyl halide i)>iii)>ii)

Propose the mechanism of the most active compound with alcoholic NaOH. [4M]

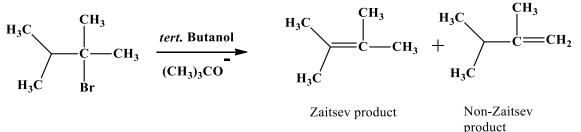
iv. Draw the energy profile diagram to depict the following reactions and identify the transition states, identify whether the reaction is endothermic or exothermic. [4M]



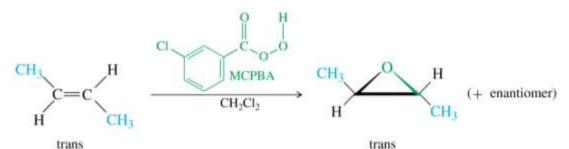
Q.3 i. Discuss Bayer strain in cycloalkane

[2M]

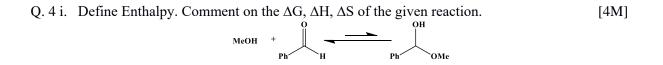
Transannular strain exists when there is steric repulsion between atoms. Eclipsing (torsional) strain exists when a cycloalkane is unable to adopt a staggered conformation around a C-C bond, and bond angle strain is the energy needed to distort the tetrahedral carbons enough to close the ring.


Ring Strain in Cycloalkanes

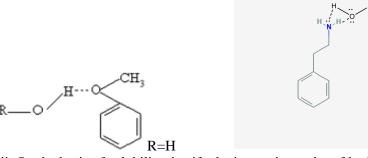
[2M]


Sodium t-butoxide, Sodium methoxide, Sodium acetate Sodium t-butoxide>Sodium methoxide>Sodium acetate

iii. What is Hoffmann rule? Complete the following reaction and suggest the mechanism (E1/E2) [4M]


The Hofmann Elimination is an elimination reaction of alkylammonium salts that forms C-C double bonds [pi bonds]. [note] It proceeds through a concerted E2 mechanism. In contrast with most elimination reactions that yield alkenes, which follow the Zaitsev (Saytzeff) rule, the Hofmann elimination tends to provide the less substituted alkene. In this post we go through the difference between Hofmann elimination and Zaitsev elimination and explain the key features in the Hofmann degradation mechanism that result in its preference for the "less substituted" alkene.

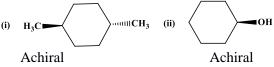
iv. Write a note on epoxidation of trans 2-butene and comment on the stereochemistry of the product. [4M]


Alkene molecule cannot rotate and change its cis or trans geometry during the reaction. So the epoxide retains whatever stereochemistry is present in the alkene.

The ring opens by treating it with NaOH and can yield racemic mixtures, however the epoxide ring won't have .

Clayden equilibrium chapter

ii. Which one of the following pair is expected to exhibit H-bonding and why. Justify your answer **Phenylethylamine and Anisole** [2M]


iii. On the basis of solubility, justify the increasing order of logP for the following compounds [2M] **Benzene** (logP= 2.13), **Bromobenzene** (logP= 2.99), **Chlorobenzene** (logP= 2.84), **Fluorobenzene** (logP= 2.27)

Bromobenzene is more hydrophobic and can cross the lipoidal barrier easily than chlorobenzene. Fluorobenzene is moe hydrophobic than benzene.

iv. Identify the best leaving group MeO⁻, ⁻OH, NH₂⁻ and justify. [2M]

Read clayden Chapter of equilibria

v. Identify whether the given molecules are chiral or achiral and Justify.

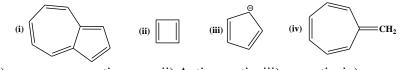
[2M]

Q.5 i. Arrange the following compounds in increasing order of acidity & Justify. [2M] o-Nitrobenzoic, p-Nitrobenzoic acid and m-Nitrobenzoic acid

The acidity of ortho-nitrobenzoic acid more as compared with para-nitrobenzoic acid is believed to be a result of the so called "ortho effect". The explanation is relying on the steric inhibition of the resonance of the COOH group. The ortho substituent may force the carboxyl group out of the plane of the benzene ring, thus decreasing the resonance of the molecule. At the same time carboxylate anion COO- is believed to be less sterically hindered and more apt to be in the energetically favorable planar configuration. This makes an additional reason to the ortho substituted acid to pass to the anion form thereby increasing its acidity as compared with the meta and para substituted acids. O nitro benzoic acid=pka value =2.17

O littlo belizoic acid=pka value =2.17

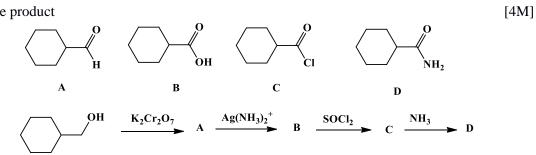
M nitro benzoic acid=pka value=3.43


P nitro benzoic acid=pka value=3.45

ii. Arrange the following compounds in increasing order of basicity & Justify. [2M]

Aniline, Cyclohexylamine, Hexanamine

Hexaneamine is stronger than Cyclohexylamine and cyclohexanamine is a stronger base than aniline. This is because lone pair of electrons on the N- atom of aniline is declocalized over the benzene ring. ... Further N- atom inaniline is sp2 hybridized and in cyclohexylamine it is sp3 hybridized.


iii. With the help of energy profile diagram draw various conformers of n-butane . Comment on their	
relative stability.	[4M]
read std book, Kalsi or Nasipuri or Eliel	
iv. Give the scheme for acid degradation/ base degradation of Paracetamol.	[4M]
read notes (Patric	
Q.6 i. Distinguish between the terms - intermediates and transition states giving suitable examples and	
support your answer by drawing energy profile diagram.	[4M]
ii. Identify whether the given molecules are aromatic, nonaromatic or antiaromatic.	[4M]

i) nonaromatic

ii) Antiaromatic, iii) aromatic, iv) non aromatic

iii. Give the product

