Algebra - I (Rev)

<u>Paper - I</u>

April: - 2016

QP Code : 33145

Revised]

(3 Hours)

[Total Marks:80

Instructions:

- Attempt any two questions from each section
- All questions carry equal marks
- Answers to Section I and Section II should be written in the same answer book.

SECTION I (Attempt any two questions)

- 1. (a) Let $T:V\to W$ be a linear transformation. Show that T is an isomorphism if and only if dim $V=\dim W$.
 - (b) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by : (i) T(x,y,z) = (x+2y-z,y+z,x+y-2z), (ii) T(x,y,z) = (x+y+z,2x+y-z,x+z). Find a basis and the dimension of Im T and Ker T.
- 2. (a) Let k_1, k_2, \ldots, k_n and j_1, j_2, \ldots, j_n be positive integers. For $A \in M_n(k)$ define $D(A) = a_{j_1} k_1 a_{j_2} k_2 \ldots a_{j_n} k_n$. Show that D is n-linear if and only if j_1, j_2, \ldots, j_n are distinct.
 - (b) (i) Find the rank of the matrix $\begin{pmatrix} 1 & 1 & -1 & 2 \\ 2 & -2 & 0 & 2 \\ 2 & -8 & 3 & -1 \end{pmatrix}$
 - (ii) Using Cramer's rule solve the equation:

$$4x - y + 3z = 2$$
$$x + 5y - 2z = 3$$
$$3x + 2y + 4z = 6$$

- 3. (a) Let T be a linear operator on a finite dimensional vector space V. If f is the characteristic polynomial for T, than f(T)=0.
 - (b) Show that similar matrices have the same minimal polynomial.
- 4. (a) Let V be an inner product space, then for any vectors $u, v \in V$ and scalar α prove the following: (i) $\|\alpha u\| = |\alpha| \|u\|$, (ii) $|\langle u, v \rangle| \le \|u\| \|v\|$
 - (b) Determine canonical form of the real non-degenerate symmetric bilinear form $\begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 2 & 3 & 4 \\ 0 & 3 & 4 & 1 \\ 1 & 4 & 1 & 5 \end{pmatrix}$

SECTION II (Attempt any two questions)

- 5. (a) (i) A cyclic group is abelian.
 - (ii) List all abelian groups (upto isomorphism) of order 180.

[TURN OVER

2

(b) Prove that every group is isomorphic to a group of permutations.

- 6. (a) Let G be a group and A be a non-empty subset of G. Define centralizer $C_G(A)$ and normalizer $N_G(A)$. Prove that both are subgroups of G. If G is an abelian group what can we say about its centralizer? Justify your answer.
 - (b) Let G be a finite group and p be a prime that divides order of G. Prove that G has an element of order p.
- 7. (a) (i) Let R, S be commutative rings with unity. Let $\varphi : R \to S$ be a ring homomorphism. Prove that Ker φ is an ideal of R.
 - (ii) Let $R = \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} \mid a,b \in \mathbb{Z} \right\}$. Define $\varphi : R \to \mathbb{Z}$ by $\varphi \left(\begin{pmatrix} a & b \\ b & a \end{pmatrix} \right) = a b$. Verify that φ is a ring homomorphism and determine Ker φ .
 - (b) Let I, J be ideals of a commutative ring R with unity. Suppose $J \subseteq I$. Show that I/J is an ideal of R/J and (R/J)/(I/J) is isomorphic to R/I.
- 8. (a) Prove that every principal ideal domain (PID) is unique factorization domain (UFD).
 - (b) Explain whether (i) \mathbb{Z} is a PID, (ii) $\mathbb{Z}[\sqrt{-5}]$ is a UFD. Justify your answer.

Analysis & Topology (Rev)

<u>Paper - II</u> April: - 2016

Revised] (3 Hours)

[Total Marks:80

QP Code: 33148

Instructions:

- Attempt any two questions from each section
- All questions carry equal marks
- Answers to Section I and Section II should be written in the same answer book.

SECTION I (Attempt any two questions)

- 1. (a) Prove that for $x=(x_1,x_2)$; $y=(y_1,y_2)\in \mathbb{R}^2$, $d_1(x,y)=\max\{|x_1-y_1|,|x_2-y_2|\}$ is a metric on \mathbb{R}^2 . Let $d_2(x,y)$ be the metric on \mathbb{R}^2 given by $d_2(x,y)=\sqrt{(x_1-y_1)^2+(x_2-y_2)^2}$. Prove that d_1 and d_2 are equivalent.
 - (b) Define n cell on \mathbb{R}^n . Prove that an n-cell I of \mathbb{R}^n is compact.
- 2. (a) Define connected set in a metric space (X, d). Prove that a metric space (X, d) is connected if and only if every continuous characteristic function is a constant function.
 - (b) Define uniform continuity of a function f on a metric space (X, d). Give an example of a function f on a suitable metric space (X, d) which is continuous but not uniformly continuous.
- 3. (a) Define differentiability of a function $f: E \subset \mathbb{R}^n \to \mathbb{R}^m$ at $a \in E$, where E is an open subset of \mathbb{R}^n . Prove that if f is differentiable, then the total derivative of f is unique.
 - (b) Give with correct justification, an example of a function such that all directional derivatives at a point exist, but f is not differentiable.
- 4. (a) State (without proof) inverse function theorem. Show that the function $f: \mathbb{R}^2 \to \mathbb{R}^2$ given by $f(x,y)=(2xy,x^2-y^2)$ is not invertible on \mathbb{R}^2 , but locally invertible at every point of $E=\{(x,y)\in\mathbb{R}^2\mid x>0\}$. Also find the inverse function at one such point.
 - (b) Determine with correct justification if $f(x,y) = x^3 + y^3 2xy$ can be expressed by an explicit function y = g(x) in a neighbourhood of the point (1,1).

SECTION II (Attempt any two questions)

- 5. (a) Define topological space (X, τ) . Define base of a topological space. Prove that a family \mathcal{B} of subsets of X is a base to the topological space X if
 - (a) $X = \bigcup_{\{B \in \mathcal{B}\}} B$
 - (b) If $B_1, B_2 \in \mathcal{B}$ and if $x \in B_1 \cap B_2$, then there exists $B \in \mathcal{B}$ such that $x \in B \subset B_1 \cap B_2$.
 - (b) Define closed set in a topological space (X, τ) . Prove that a set A in a topological space (X, τ) is closed if and only if $X \setminus A$ is an open set in (X, τ) .

[TURN OVER

QP Code: 33148

2

- 6. (a) Let (X, τ) be a topological space. When is (X, τ) called a T_0 space? Prove that being T_0 is a topological property (i.e., it is preserved under homeomorphisms.)
 - (b) Define Lindelöff topological space. Prove that if (X, d) is a Lindelöff metric space, then (X, d) is a separable metric space.
- 7. (a) Define compact set in a topological space (X, τ) . Let Y be a subspace of X. Prove that Y is compact if and only if every open covering of Y by sets open in X contains a finite subcollection covering of Y.
 - (b) State and prove tube lemma.
- 8. (a) Define sequential compactness in a metric space (X, d). Prove that if (X, d) is sequentially compact, then for every $\varepsilon > 0$, there exists a finite covering of X by ε balls.
 - (b) State and prove Lebesgue covering lemma.

Complex Analysis (Rev)

<u>Paper - IV</u> April: - 2016

QP Code: 33154

External(New Syllabus)]

(3 Hours)

[Total Marks:80

Instructions:

- Attempt any two questions from each section
- All questions carry equal marks
- Answers to Section I and Section II should be written in the same answer book.

SECTION I (Attempt any two questions)

- 1. (a) Suppose $z_n=x_n+iy_n$ and $z_0=x_0+iy_0$ then prove that $\lim_{n\to\infty}z_n=z_0$ if and only if $\lim_{n\to\infty}x_n=x_0$ and $\lim_{n\to\infty}y_n=y_0$.
 - (b) Find the domain of region of convergence of the following power series $\sum_{n=1}^{\infty} \left(\frac{iz-1}{3+4i} \right)^n$
- 2. (a) Prove that Bilinear Transformation preserves Cross Ratio. Hence or otherwise find the fixed points of $w = \frac{1+3iz}{i+z}$.
 - (b) Prove that the circle |z-2|=3 is mapped onto a circle $\left|w+\frac{2}{5}\right|=\frac{9}{25}$ under the transformation $w=\frac{1}{z}$.
- 3. (a) Prove: Let u and v be real valued functions defined on the domain $G \subset \mathbb{C}$ and suppose that u and v have continuous partial derivatives then $f: G \to \mathbb{C}$ defined by f(z) = u(z) + iv(z) is analytic if and only if u and v satisfy Cauchy Riemann equation.
 - (b) If $v = e^x \sin y$, prove that v is a harmonic function. Also find the corresponding harmonic conjugate and analytic function.
- 4. (a) State and prove the Cauchy-Goursat theorem.
 - (b) Evaluate $\int_{0}^{1+i} x^2 + iy \, dz$ along:
 - (i) The line y = x
 - (ii) Along the parabola $y = x^2$. Is the integral independent of path?

SECTION II (Attempt any two questions)

- 5. (a) State Cauchy Integral Formula. Hence or otherwise evaluate $\int_{z}^{z} \frac{z+3}{2z^2+3z-2} dz$.
 - (b) State and prove Moreras theorem.
- 6. (a) State and prove Schwarz Lemma.

[TURN OVER

MT-Con. 3677-16.

- (b) Suppose f is non-constant and analytic in a domain of G. If |f| attains minimum in G at α , then prove that $f(\alpha) = 0$.
- 7. (a) State and prove Casorti Weiestrass theorem.
 - (b) Find all the possible Laurent Series expansions of $f(z) = \frac{1}{(z-1)(z-2)}$.
- 8. (a) State and prove Rouche's Theorem.
 - (b) Use the contour integration to evaluate $\int\limits_{-\infty}^{\infty} \frac{x^2+x+2}{x^4+10x^2+9} \mathrm{d}x$

Discrete Mathematics (Rev)

April: - 2016

External(Revised)]

(3 Hours)

[Total Marks:80

QP Code: 33151

Instructions:

- Attempt any two questions from each section
- All questions carry equal marks
- Answers to Section I and Section II should be written in the same answer book.

SECTION I (Attempt any two questions)

- 1. (a) (i) Find the remainder when 2^{50} and 41^{65} are divided by 7.
 - (ii) Define Mobius function μ . Prove that μ is a multiplicative function.
 - (b) Using Cardano's method solve the cubic equation $x^3 2x^2 5x + 6 = 0$
- 2. (a) In how many ways can m distinguishable balls be put into n indistinguishable boxes?
 - (b) Define Stirling's number of first kind s(n, k). Show that (i) s(n, 1) = (n 1)!, (ii) $\sum_{k=0}^{n} s(n, k) = n!$
- 3. (a) State Pigeonhole Principle. Let T be an equilateral triangle with side length 1 unit. Show that if 5 points are chosen in T then two of them will be at most 1/2 unit apart.
 - (b) (i) Let m and n be relative prime positive integer. Prove that the system $x \equiv a \pmod{m}$ and $x \equiv b \pmod{n}$ has a solution.
 - (ii) Given any six integers in $1, 2, \ldots, 10$ prove that there exist at least two that add upto 11.
- 4. (a) (i) A tree has two vertices of degree 2, one vertex of degree 3 and three vertices of degree 4. How many vertices of degree 1 does it have?
 - (ii) Show that an edge e of graph G is not a cut edge if and only if e belongs to a cycle in graph G
 - (b) Show that the following are equivalent in a Boolean algebra: (i) a + b = b, (ii) a * b = a, (iii) a' + b = 1, (iv) a * b' = 0

SECTION II (Attempt any two questions)

- 5. (a) (i) For a matrix $A = [a_{ij}]$ of order $n \times n$ define e^A and prove that it is a well defined matrix of the same order.
 - (ii) Obtain with justification the solution of the initial value problem:

$$\frac{dx}{dt} = A(x), \ x(t_0) = x_0 \in \mathbb{R}$$

TURN OVER

(b) Solve:

$$\frac{dx}{dt} = 4x + 3y, \quad x(2) = 2$$
$$\frac{dy}{dt} = -3x + 4y, \quad y(2) = 4$$

- 6. (a) (i) Explain the method of reducing an intial value problem of order $n(\geq 2)$ to a system of first order oridinary differential equations with initial conditions.
 - (ii) State and prove a condition guaranteeing a unique solution of the order $n(\geq 2)$ initial value problem.
 - (b) Reduce the following initial value problem to a first order system with initial conditions and solve it:

$$\frac{d^2x}{dt^2} + 5\frac{dx}{dt} = 2x + 3t$$
$$x(0) = 1$$
$$\frac{dx}{dt}(0) = 2$$

7. (a) For the vibrating string problem:

$$\frac{\partial^2 X}{\partial t^2} = c^2 \frac{\partial^2 X}{\partial x^2}, t \ge 0, 0 \le x \le L, c, L$$
 being constant real numbers, describe the method of separation of variables.

(b) Find all the eigenvalues of the boundary value problem:

$$\frac{d^2X}{dt^2} + 10X = 0, X(0) = 0 = \frac{dX}{dt}(2)$$

- 8. (a) Describe the Cauchy problem for the non-linear partial differential equation $F(x,y,u,\frac{\partial u}{\partial x},\frac{\partial u}{\partial y})=0$ in a function u=u(x,y) and obtain the five characteristic equations for it.
 - (b) Solve the quasilinear Cauchy problem:

$$x\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = y$$
$$u(x,0) = x^2$$

Soft Skills, Logic & Elementary

(Rev) April: - 2016

3 Hours) IXCVINEU

[Total Marks:80

QP Code: 33157

Instructions:

- Attempt any two questions from each section
- All questions carry equal marks
- Answers to Section I and Section II should be written in the same answer book.

SECTION I (Attempt any two questions)

1. (a) Prepare the truth table of the following:

(i)[
$$(p \land q) \lor (-p \land r)$$
] $\lor (q \land r)$
(ii)[$p \Rightarrow (-q \lor r)$] $\land [-q \lor (p \Leftrightarrow -r)]$

- (b) Show that the relation of congruence modulo p has p distinct equivalence classes.
- 2. (a) State and prove Schroder Bernstein theorem.
 - (b) Check given relations are Equivalence or not (i) $S=\Re \times \Re$ and relation is $(x_1,y_1)R(x_2,y_2)$ iff $x_1+x_2=y_1+y_2$ (ii) S=Z and relation R is defined as, for $x,y\in Z\in \mathcal{X}$ and $x_1+x_2=y_1+y_2$ is divisible by 3.
- 3. (a) Let S be an arbitrary poset with a subset X. Show by an example that X may have just one maximal but no supremum
 - (b) Prove using principle of Mathematical Induction $8^n 3^n$ is divisble for $n \in \mathbb{N}$.
- 4. (a) If α and β are disjoint cycles then prove that disjoint cycles are commutative i.e. $\alpha\beta = \beta\alpha$. Also prove that every permutation in S_n is a product of disjoint cycles.

(b) Compute
$$\sigma^{1057}$$
 for the given permutations:
 (i) $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 1 & 4 & 5 & 3 & 7 & 6 \end{pmatrix}$, (ii) $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 6 & 1 & 7 & 4 & 2 & 5 \end{pmatrix}$

SECTION II (Attempt any two questions)

- 5. (a) (i) From a standard deck of 52 cards, we draw 13 cards. What is the probability that we have 5 spades and three diamonds cards in our hands?
 - (ii) Let $\mathcal F$ be a family of subsets of a non-empty set Ω . What are the conditions which makes $\mathcal F$ a field? For $\Omega = \{1, 2, 3\}$ find smallest field on Ω containing $\{1\}, \{2\}$.
 - (b) (i) Let P be a finitely additive probability measure on a filed \mathcal{F} . Show that $P(A\Delta B) = P(A) + P(B) - 2P(A \cap B) \text{ for } A, B \in F.$
 - (ii) Define σ -field. Is the family \mathcal{F} consisting of all finite subsets of a non-empty set Ω and their complements always a σ -field? Justify your answer.
- 6. (a) (i) Define countably additive probability measure. Let \mathcal{F} be the family of all subsets of \mathbb{N} . Put $P(\{i\}) = \alpha_i, i = 1, 2, \dots$ and extend P to a countably additive probability measure on \mathcal{F} under suitable conditions on the numbers α_i .

[TURN OVER

QP Code: 33157

- (ii) Elderly friend of yours has two children, one of whom is a girl, but you do not know the sex of the other child. How likely is it that it is a boy? Justify your answer.
- (b) (i) Let Ω be an n-element set with uniform probability and let $A,B\subset \Omega$ be independent. Show that if A has i elements, then B must have $j=k\frac{n}{\gcd(i,n)}$ for some $k\in\{0,1,\ldots,\gcd(i,n)\}$.

2

- (ii) Let (Ω, \mathcal{F}, P) be a probability space. Define P(A|B), a conditional probability of A given B, for $A, B \in \mathcal{F}$. Suppose $A, B \in \mathcal{F}$ such that $0 \neq P(B) \neq 1$. Show that P(A) = P(A|B) if and only if $P(A) = P(A|(\Omega \setminus B))$.
- 7. (a) (i) Define a random variable on Ω , given a σ -field $\mathcal F$ on a non-empty set Ω . Suppose a random variable X has the normal distribution N(0,1). Then compute the normal distribution of a+bX, where $a,b\in\mathbb R$.
 - (ii) When is a random variable X said to have the binomial distribution B(n,p) for $n \in \mathbb{N}$ and $p \in [0,1]$? Let X_n be a sequence of random variables with binomial distribution $B(n,\lambda/n)$ for some $\lambda > 0$. Show that $\lim_{n \to \infty} P(\{X_n = k\}) = e^{-\lambda} \frac{\lambda^k}{k!}$.
 - (b) (i) Define a simple random variable X and define expectation E(X). For independent simple random variables X and Y, show that E(XY) = E(X)E(Y).
 - (ii) Define variance of a discrete random variable. Compute the variance of a random variable with normal distribution.
- 8. (a) (i) Define the characteristic function of a random variable. If X is a random variable such that, $P(\{X \in \mathbb{Z}\}) = 1$ then show that characteristic function of X is a periodic function with period 2π .
 - (ii) How many independent tosses of a fair coin are required for the probability that the average number of Heads differ from 0.5 by less than 2% to be at least 0.99? (Given that area under normal curve between x = 0 and x = 2.59 is 0.4950.)
 - (b) (i) State Chebyshev inequality. A survey of is taken by using a random sample of n families, having a single child. Let S_n denote the number of families in the sample, having a daughter as the single child. Use Chebyshev inequality to find a lower bound of the probability that $\frac{S_n}{n}$, differs from 1/2, by less than 1% when n = 100.
 - (ii) State Central limit theorem. What is the probability that number of heads in 10000 tosses will be greater than 5100? (Given that area under normal curve between x = 0 and x = 2 is 0.477).

Algebra - I (Old)

<u>Paper - I</u>

(3 Hours) (2 Hours) **QP Code : 25193**

[Total Marks: 100 [Total Marks: 40

Instructions:

- Mention on the top of the answer book the scheme under which you are appearing
- Scheme A students should attempt any five questions
- Scheme B students should attempt any three questions
- All questions carry equal marks
- 1. (a) Show that a finite semi-group G in which cancellation laws hold is a group.
 - (b) Show that the number of generators of an infinite cyclic group is two.
- 2. (a) Show that the order of a subgroup of a finite group divides the order of the group.
 - (b) Prove that every group of prime order is abelian.
- 3. (a) Prove that a group of order 36 is not simple.
 - (b) Show that every quotient group of a cyclic group is cyclic, give an example to show that the converse need not to be true.
- 4. (a) Show that the intersection of two subrings of a ring R is a subring of R. Give one example to show that the union of two subrings of R need not to be a subring of R.
 - (b) If R is commutative ring with unity whose only ideals are $\{0\}$ and R, then show that R is a field.
- 5. (a) Let R be a commutative ring with unit element in which every ideal is a prime ideal. Prove that R is a field.
 - (b) If p and q are prime elements in an integral domain R with unity such that p|q then show that p and q are associates.
- 6. (a) If U(F) and V(F) are two vector spaces and T is a linear transformation from U into V then show that the null space of T is sub space of U.
 - (b) Show that there exists a basis for each finite dimensional vector space.
- 7. (a) Let U, V be vector spaces over the field F and let T be a linear transformation from U into V. If T is one-one and onto, then show that the inverse function T^{-1} is a linear transformation from V into U.
 - (b) In $V_3(\mathbb{R})$, examine each of the following sets of vectors for linear dependence
 - 1. $\{(-1,2,1), (3,0,-1), (-5,4,3)\}$
 - 2. $\{(1,3,2), (1,-7,-8), (2,1,-1)\}$
- 8. (a) Suppose that α and β are vectors in an inner product space. If $|(\alpha, \beta)| = ||\alpha|| ||\beta||$. Then show that α and β are linearly dependent.
 - (b) Find all (complex) characteristic values and characteristic vectors of $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

MT-Con.3610-16.

Analysis (Old)

<u>Paper - II</u> April: - 2016

Scheme A (External)] Scheme B (Internal)] (3 Hours) (2 Hours) [Total Marks:100

[Total Marks: 40

QP Code: 25202

Instructions:

• Mention on the top of the answer book the scheme under which you are appearing

• Scheme A students should attempt any five questions

• Scheme B students should attempt any three questions

• All questions carry equal marks

1. (a) State and prove Heine-Borel theorem.

(b) Prove that every bounded sequence in $\mathbb R$ has a convergent subsequence.

2. (a) If $f: \mathbb{R}^n \to \mathbb{R}^m$ is given by $f = \{f_1, f_2, \dots, f_m\}$, show that f is continuous at $a \in \mathbb{R}^n$ if and only if each f_i is continuous at a for $i = 1, 2, \dots, m$.

(b) Discuss the continuity and differentiability of f at (0,0) if $f(x,y) = \sqrt{xy}, \forall (x,y) \in \mathbb{R}^2$

3. (a) Define the pointwise and uniform convergence of a sequence $\{f_n(x)\}$ of real-valued functions on S, where S is a non-empty subset of \mathbb{R} . Show that if $\{f_n(x)\}$ is uniformly convergent then it is convergent.

(b) Show that the sequence $\left\{\frac{e^{-nx}}{3n}\right\}$ converges uniformly on \mathbb{R} .

4. (a) State and prove Weirstrass test for uniform convergence of a series $\sum f_n(x)$.

(b) State Ratio test for convergence of a positive term series. Hence discuss the convergence of $\sum \frac{x^n}{(2n)!}, x \in \mathbb{R}$

5. (a) When do you say that a function $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at $a \in \mathbb{R}^n$? Find the total derivative of $f(x,y,z) = x^2y - yz^3$ at (1,1,-1).

(b) State and prove Mean value theorem for a differentiable function $f: \mathbb{R}^n \to \mathbb{R}$.

6. (a) State Taylor's theorem and use it to expand the function $f(x,y) = \tan x \cdot \tan y$ near $(\pi, -\pi)$ upto and including second degree terms.

(b) Find the jacobians of f,g and $f\circ g$ at (1,1,2) given that f(x,y,z)=(xy,yz,zx) and $g(x,y,z)=(y-3z,x+y,z^2-x)$

7. (a) State and prove Fubini's theorem for a double integral over a rectangle in xy-plane.

(b) Evaluate the double integral of f(x,y)=3x over the bounded region between the lines x+y=1, x+y=2, 2x-y=2 and 2x-y=3.

8. (a) Show that the improper integral $\int_{a}^{b} \frac{dx}{(x-a)^{p}}$ (p>0) converges if and only if p<1. Hence discuss the convergence of $\int_{0}^{1} \frac{dx}{\sqrt{x}(x+1)}$

(b) Define the convergence of $\int_{a}^{\infty} f(x) dx$. Hence show that $\int_{a}^{\infty} \frac{dx}{1+x^2}$ converges but $\int_{a}^{\infty} x^2 dx$ does not.

MT-Con. 3672-16.

Topology (Old)

Paper – III <mark>April: - 20</mark>16

Scheme B (Internal)]

(3 Hours) (2 Hours) [Total Marks: 100 [Total Marks: 40

Instructions:

- Scheme A students should attempt any five questions.
- Scheme B students should attempt any three questions.
- All questions carry equal marks.
- Mention clearly the Scheme under which you are appearing.
- 1. (a) Let $f: X \to Y$. Prove that f is injective iff $f(A \cap B) = f(A) \cap f(B)$ for all subsets A, B of X.
 - (b) Let $n \in \mathbb{N}$ and P be a set with $p_0 \in P$. Prove that there exists a bijective correspondence f on the set P with the set $\{1, 2, \ldots, n+1\}$ iff there exists a bijective correspondence g on the set $P p_0$ with the set $\{1, 2, \ldots, n\}$.
- 2. (a) Let X be a topological space and $A \subseteq X$. Prove that the following statements are equivalent: (i) A is closed (ii) $A = \overline{A}$ (iii) A contains all its limit points.
 - (b) Define a connected topological space. Let X be a topological space and A be a subset of X. Show that if A is connected then its closure \overline{A} is also connected.
- 3. (a) Let X, Y be topological spaces. Show that if A is closed in X and B is closed in Y then $A \times B$ is closed in $X \times Y$.
 - (b) Show that every open subset of \mathbb{R} is the union of disjoint sequence of open intervals.
- 4. (a) Let $p: X \to Y$ be a quotient map. Suppose $f: X \to Z, g: Y \to Z$ are maps with f being continuous and $g \circ p = f$. Prove that g is a continuous map.
 - (b) Let X,Y be topological spaces. Define product topology on $X\times Y$. Let $\pi_1:X\times Y\to X$ be defined as $\pi_1(x,y)=x, \forall (x,y)\in X\times Y$. Is π_1 an open map? Is π_1 a closed map? Justify your answer
- 5. (a) Prove that every compact subset of a Hausdroff space is closed.
 - (b) Let X, Y be topological spaces. If Y is compact then prove that the projection map $\pi_1: X \times Y \to X$ is a closed map.
- 6. (a) Let f and g be two paths in a topological space with same initial point and same end point. Define the path homotopy relation \simeq_p and show that it is an equivalence relation.
 - (b) Prove that the image of a compact space under a continuous map is compact.
- 7. (a) Prove that any connected open subset of \mathbb{R} is a countable union of disjoint open intervals.
 - (b) State and prove the path lifting lemma.
- 8. (a) Prove or disprove: "The set of all irrational numbers in \mathbb{R} is a Baire space".
 - (b) Prove that the fundamental group $\pi_1(S^1, (1, 0))$ is isomorphic to the group \mathbb{Z} of integers under addition.

Combinatorics

Paper V April: - 2016

Scheme B(Internal/External)

(3 Hours) (2 Hours) Total marks: 100 Total marks: 40

QP Code: 25229

N.B: 1) Scheme A students answer any five questions.

- 2) Scheme B students answer any three questions.
- 3) All questions carry equal marks.
- 4) Write on the top of your answer book the scheme under which you are appearing.
- 1. (a) Determine 12-combinations of multiset $S = \{4.a, 3.b, 4.c, 5.d\}$
 - (b) In how many ways can 9 gentleman and 5 ladies be seated at round table if no two ladies are to sit in alternate seats?
- 2. (a) Define Stirling numbers of second kind S(n,k) and prove the identity:

 $x^n = \sum_{k=1}^n S(n,k)[x]_k$ where $[x]_k$ denotes the falling factorial.

- (b) Show that number of surjective functions from an *n*-set to *m*-set where $m \le n$ is m! S(n, m).
- 3. (a) Give one application of Pigeon hole principle by stating strong form of Pigeon hole principle.
 - (b) Write a note on derangement of n objects D_n. Derive formula for D_n.
- 4. (a) State and prove Mobius inversion formula.
 - (b) Solve the recurrence relation $a_n 3a_{n-1} = 2 2n^2$ given that $a_0 = 3$.
- 5. (a) How many 6 digits numbers can be formed using digits 1, 2, 3, 4, 5 such that any digit that appears in the number appears at least twice?
 - (b) Find sum of all coefficients in $(3x 5y + z)^3$.
- 6. (a) You have two coins, a fair one with probability of tails 1/2 and unfair on with probability of tails 1/3, but otherwise identical. A coin is selected at random, falling tails up. How likely is that it is a fair coin?
 - (b) In a sample 2% of the population have a certain blood disease in a serious form. 20% have it in a mild form; 88% don't have it at all. A new blood test is developed; the probability of testing positive is 9/10 if the subject (patient) has the serious form, 6/10 if the subject has the mild form and 1/10 if the subject doesn't have the disease. A person X just tested positive. What is the probability that X has the serious form of disease?
- 7. (a) State and prove Baye's theorem.
 - (b) If X and Y are independent random variables then show that $\phi_{X+Y}(t) = \phi_X(t) \cdot \phi_Y(t)$. Hence show that if X and Y are two independently normally distributed random variables then X + Y is normally distributed random variable.
- 8. (a) Let X and Y be independent random variables with binomial distributions B(m, p) and B(h, p) respectively. Prove that X + Y is also binomial distribution with B(m+n, p).
 - (b) Define variance of a discrete random variable. Compute the variance of random variable with normal distribution.
