UNIVERSITY OF MUMBAI

Syllabus for the M.Sc. Part - II [Semester III and IV]

Program: M.Sc.

Course: Life Sciences

Specialization:

Biochemistry

Choice Based Credit and Grading System

The Academic Year 2017-18

M.Sc. Semester III and IV - Life Sciences Syllabus Restructured for Credit Based Semester and Grading System To be implemented from the Academic year 2017-2018 SEMESTER III Theory

Course Code	UNIT	TOPIC HEADINGS	Credits	L / Week
PSLSCBMT301	I	Biomathematics		
(Biomathemati cs and Cell	П	Cell and Molecular Biology Techniques	4	
Biology		Animal Tissue Culture		
Techniques)	IV	Plant Tissue Culture		

PSLSCBMT302	I	Bioenergetics and Carbohydrate Metabolism		
(Bioenergetics	II	Lipid Metabolism	4	
anu Carbohydrate	111	Amino Acid Metabolism	4	
Metabolism)	IV	Metabolic Engineering and Systems Biology		

	I	Chemical Bonds and Spectroscopic Techniques		
PSLSCBMT303	П	Protein and Nucleic Acid Structure		
(Biomolecular Structure)	111	Supramolecular Assemblies and DNA-protein Interactions	4	
	IV	Biomolecular Structure and Diseases		

Course Code	UNIT	TOPIC HEADINGS	Credits	L / Week
PSLSCBMT304	Ι	Research Methodology		
(Research	II	Scientific Writing	_	
Methodology	Ш	ISO	4	
Control)	IV	GLP and GMP		

Practical

PSLSCBMP301	Biomathematics and Cell Biology Techniques	2	
PSLSCBMP302	Bioenergetics and Carbohydrate Metabolism	2	
PSLSCBMP303	Biomolecular Structure	2	
PSLSCBMP304	Literature Review	2	

SEMESTER IV

Theory

	I	Cell Division and Apoptosis		
PSLSCBMT401	II	Biomembrane and Cell Matrix	4	
(Notecular Cell Biology)		Protein Trafficking and Targeting	4	
21010877	IV	Gene Silencing and Epigenetics		

	I	Nucleotide Metabolism		
PSLSCBMT402	II	Nitrogen Assimilation in Plants		
Metabolism and Plant	Ш	Photosynthesis and Secondary Metabolism	4	
Biochemistry)	IV	Free radicals and Antioxidant Biology		

PSLSCBMT403 (Biomolecular	I	Protein folding and Engineering		
PSLSCBMT403	П	Kinetics and Mechanism in Biological Systems		
(Biomolecular Function)	111	Metabolomics and Transcriptomics	4	
	IV	Nanobiology		

PSLSCBMT404	I	Natural products		
(Drug Development	П	Activity Guided Drug Development	4	
and		Environmental toxicology		
Toxicology)	IV	Environmental monitoring		

Practical

PSLSCBMP401	Molecular Cell Biology	2	
PSLSCBMP402	Nitrogen Metabolism and Plant Biochemistry	2	
PSLSCBMP403	Biomolecular Function and Environmental Toxicology	2	
PSLSCBMP404	Project	2	

M.Sc. Part – II Life Sciences Syllabus Restructured for Credit Based Semester and Grading System To be implemented from the Academic year 2017-2018 Semester III Detailed Syllabus

Course Code	Title	Credits
PSLSCBMT301	Biomathematics and Cell Biology Techniques (60L)	4
Unit I: Biomather Biomathematics: Determinants, M and derivatives, Differentiation, In substitution, spec integration to fin ODE's and its sim	matics(15L)Binomial Theorem (without infinite series),atrices, Rank of Matrices by Diagonalisation method LimitDifferentiation (including differentiability), Successiventegration – Definite and Indefinite (ordinary, method ofcial trigonometric function, partial fraction) Application ofd area, Differential equationshomogeneous and Linearple applications to biological problems.	
Unit II: Cell and N Cell Biology Tech of flow cytometry Plasmon resonand	Iolecular Biology Techniques (15L) niques: Principles, Instrument overview, and Applicationsr, Fluorescence Resonance Energy Transfer (FRET); Surfacece.	
Proteomics: Pept of post-translation spectrometry; X scattering (SLS Differential scann Genomics: Oligo hybridization; D sequencing; Meth level; Site direct Serial analysis of g	ide synthesis and Protein sequencing methods, detection n modification of proteins; 2-D gel electrophoresis; Mass -ray diffraction methods; Static and dynamic light and DLS); Capillary electrophoresis; Protein chips; ing calorimetry; Isothermal titration calorimetry. onucleotide synthesis; DNA chips/microarrays; DNA NA sequencing methods; Strategies for genome nods for analysis of gene expression at RNA and protein ed mutagenesis; Gene knockdown; Differential display; gene expression (SAGE).	
Unit III: Animal Ti Basic of animal ti preparation of p culture growth p contamination in Culture: Short ter vitro skin cell cu vitro, cryopreserv Analysis and Prop	ssue culture(15L)ssue culture: Methods of cell dissociation/separation and rimary cell culture, characteristics of cells in vitro, cell parameters, detection, prevention and determination of tissue culture.rm culture, Specialized cells: bone marrow myogenesis, in lture, ethrogenesis - leukemia cells, chondriogenesis- in ation of tissues and cell lines.duction: cell synchronization, cell transformation in vitro, ended and bis formation in vitro,	
Mass cultivation- animals.	cytodex and biofermentors. cell cloning and Transgenic	

Applications: Stem cells & therapeutic cloning, Tissue engineering and 3D printing	
Unit IV: Plant Tissue Culture (15L)	
Basics of plant tissue culture: Totipotency, macro and micro nutrients, media.	
Culture: micropropogation, Callus culture, Somaclonal variation, Suspension cell culture, Protoplast culture, Somatic hybridization, Cybrids, Somatic embryogenesis and synthetic seed production. Cryopreservation. Recombinant technology: Plant transformation by <i>Agrobacterium</i> <i>tumfaciens</i> [including mechanism of T DNA transfer in wild type Agrobacterium], <i>A. rhizogenes</i> its plasmid, Biolistics: chloroplast transformation: advantages and disadvantages of the technique.	
Applications of transgenics: vaccine subunits, edible vaccines, from hairy root cultures.	
Transgenic plants : Stress resistance [salt, water, and temperature], Improved nutrition shelf life and Novel applications for industrial purpose, biodegradable plastics, and novel horticultural traits [flower colour, varigation].	
Examples of secondary metabolite production (industrial scale): [shikonin, taxol (biosynthesis and bioreactor production) capsasin/ berbrine].	

Practical:

PSLSCBMP301	Biomathematics and Cell Biology Techniques (60L)	2	04
	1. Mathematical sums to be solved in biomathematics		
	2. Site directed mutagenesis		
	3. 2-D Gel electrophoresis (Demonstration)		
	4. Expression of foreign protein in <i>E. coli</i>		
	5. Establishment of Primary Culture (ATC) using a suitable		
	source.		
	6. In vitro Culture - Washing & Sterilization, Preparatory		
	steps for tissue culture, surface sterilization of plant		
	material, basic procedures for Aseptic tissue transfer,		
	incubation of culture.		
	7. Preparation of Culture media & Reagents - Media		
	composition, Nutrition, Hormones.		
	8. Tissue Culture – Callus culture, Cell suspension		
	9. Preparation of plant protoplast and test for viability		
	10. Plant micro-propagation – micro-culture of plants.		
	11. Nucleic acid isolation and blotting		
	A. Isolation of RNA from <i>E. Coli</i>		
	B. Spectrophotometric characterization of RNA		
	C. Capillary blotting (Southern/Northern) of nucleic		
	acids from agarose gels		

	D. Preparation of cDNA and RT-PCR	
1	12. Demonstration of proteomic and genomic techniques.	

- 1. Primrose, S.B. and Twyman, R.M. (2006) Principles of Genetic Manipulation and Genomics. Seventh Edition. Blackwell Publishing, USA.
- 2. Winnacker, E-L.(1987) From Genes to Clones. VCH Publishers, USA.
- 3. SambrookJ.and Russell D.2001.Molecular Cloning: A Laboratory Manual, 3rd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
- 4. A K Vasil. Cell culture and somatic cell genetics of plants (Vols.1to3) A, Press.
- 5. Ed. John R.W Masters Animal cell culture-Practical approach 3rd edition, Oxford university press-2000
- 6. In vitro cultivation of Animal cells. Elsevier India PVT LTD-17-A/1 Main Ring Road, New Delhi-110024
- 7. R. Sasidhara, Animal Biotechnology MJP publishers-Chennai.
- 8. Industrial Biotrasformations by A. Liese, K. Seelbach and C. Wandrey; Wiley VCH.
- 9. Role of Biotechnology in Medicinal and Aromatics Plants by Khan and Khanum Vol. 1 to 3. Plant Tissue Culture by M. K. Razdan.
- 10. Animal Cell Culture by Ian Freshney
- 11. Basic Cell Culture. Ed.J.M.Davis 2nd.Ed 2007. Oxford press
- 12. Animal Cell Culture SudhaGangal

Course Code	Course Code Title	
PSLSCBMT302	Bioenergetics and Metabolism (60L)	4
Unit I: Bioenergetics and Carbohydrate Metabolism (15L) Bioenergetics: Concept of free energy, standard free energy, determination of ΔG for a reaction; Relationship between equilibrium constant and standard free energy change, biological standard state & standard free energy change in coupled reactions; Biological oxidation-reduction reactions; Redox potentials; Relation between standard reduction potentials & free energy change; High energy phosphate compounds – introduction, phosphate group transfer, free energy of hydrolysis of ATP and sugar phosphates alongwith reasons for high ΔG .		
Carbohydrate M microorganisms; Gluconeogenesis, aminobutyrate sh Doudoroff pathw Hormonal regula carbohydrate met	Metabolism: Glycolysis in higher organisms and Pentose phosphate pathway and its regulation; glycogenesis and glycogenolysis, glyoxylate and Gamma nunt pathways; Cori cycle; Anaplerotic reactions; Entner- ay; Glucuronate pathway; Metabolism of disaccharides; ation of carbohydrate metabolism; Inborn errors of tabolism.	
Unit II: Lipid Meta Fatty acid catabo fatty acids; Oxida Role of carnitine bodies; Energetics	abolism (15L) lism: Hydrolysis of tri-acylglycerols; α-, β-, ω- oxidation of ation of odd numbered fatty acids – fate of propionate; by Degradation of complex lipids; Formation of ketone s of beta oxidation.	
Fatty acid biosyn structure and fur acylglycerols, ph Metabolism of cho steroid hormones chloroplast; Inbor	thesis : Acetyl CoA carboxylase; Fatty acid synthase; ACP action; Lipid biosynthesis; Biosynthetic pathway for tri- hosphoglycerides, sphingomyelin and prostaglandins; bilesterol and its regulation; Biosynthesis of bile acids and s; Alternative pathway for isoprenoid biosynthesis in a errors of fatty acid metabolism.	
Unit III Amino Aci Amino acid cata metabolism - Tran deamination of a CoA, succinate, fu regulation; Ammo	d Metabolism (15L) bolism: Proteolysis; General reactions of amino acid nsamination, decarboxylation, oxidative & non-oxidative mino acids; Acetyl CoA, alpha ketogutarate, acetoacetyl umarate and oxaloaccetate pathway; Urea cycle and its nia excretion.	
Biosynthesis of A Histidine; One car serine, cysteine, specialized produc	Amino Acids: Biosynthesis of aromatic amino acids and bon atom transfer by folic acid (Biosynthesis of glycine, methionine, threonine); Conversion of amino acids to cts; Inborn errors of protein metabolism.	
TCA cycle: Centra of energy rich b	I role of TCA cycle in energy generation and biosynthesis ond; Integration/regulation of carbohydrate, lipid and	

Unit : IV Metabolic Engineering and Systems Biology(15L)Metabolic Engineering: Historical perspective and introduction; Importance of metabolic engineering; Paradigm shift; Information resources; Scope and future of metabolic engineering; Plant and microbial metabolic engineering; Metabolically engineered organisms; Metabolic flux analysis.Systems Biology: Concepts and working principles of System Biology - Practical applications of System Biology in Life Sciences - Introduction to System Biology platforms; Proprietary system Biology platform; Different Markup languages used in systems biology. Introduction to NGS technology	protein metabolism.	
cermology.	Unit : IV Metabolic Engineering and Systems Biology(15L)Metabolic Engineering: Historical perspective and introduction; Importance of metabolic engineering; Paradigm shift; Information resources; Scope and future of metabolic engineering; Plant and microbial metabolic engineering; Metabolically engineered organisms; Metabolic flux analysis.Systems Biology: Concepts and working principles of System Biology - Practical applications of System Biology in Life Sciences - Introduction to System Biology platforms; Proprietary system Biology platform; Different Markup languages used in systems biology. Introduction to NGS technology.	

Practical:

PSLSCBMP302	Bioenergetics and Metabolism	(60L)	2	04
	1. Estimation of inorganic phosphorus by	Fiske and		
	SubbaRao	method		
	2. Determination of pyruvate by 2,4-din	itrophenyl		
	hydrazine	method		
	3, Isolation of cholesterol and lecithin from	egg yolk		
	4. Assay of alanine and aspartate aminotra	ansferases		
	5. Fractionation of cell organelles from ani	imal/plant		
	tissues and identification by marker	enzymes		
	6. Effect of metal ions on the activity of enzyme	s/proteins		
	7. Determination of Molar absorption coef	ficient of		
	tyrosine			
	,			

- 1. L. Stryer, Biochemistry, W.H. Freeman and Co. 5th 2002
- 2. Voet, Donald, Voe Judith, Pratt, Charlotte W. Fundamentals of Biochemistry: Life at the molecular Level 2nd Edition. Publisher: Asia, John Wiley & Sons. 2006.
- 3. Nelson David L., Cox Michale. Lehninger Principles of Biochemistry 5th Edition.Publisher: New York. W. H. Freeman. 2008.
- 4. Text Book of Biochemistry with clinical correlation by Thomas M. Devlin, John Wiley -Liss, Hobokhen NJ publishers (2006)
- 5. Zubey, Biochemistry GL WCB Publishers.
- 6. Stephanopoulos Gregory N., Aristidou Aristos A., Nielsen Jens. Metabolic Engineering: Principles and Methodologies. Publisher: New Delhi, Reed Elsevier India Pvt. Ltd. 2006.
- 7. Purich Daniel L., Allison R. Donald. The Enzyme Reference: A Comprehensive Guidebook to Enzyme Nomenclature, Reactions, and Methods. Publisher: California, Academic Press.
- 8. Andres Kriete (Editor), Roland Eils (Editor). System Biology: Computational Systems Biology (Hardcover)
- 9. Uri Alon, An Introduction to Systems Biology: Design Principles of Biological Circuits, Chapman & Hall/CRC Press, Mathematical and Computational Biology, 2nd edition, 2006.

Course Code	Title		Credits
PSLSCBMT303	Biomolecular Structure	(60L)	4
Unit I: Chemical Bo Inter atomic intera weak, non-covaler Waals forces and interactions and th Spectroscopic teo Infrared, Rama Optical Activity: applications of CD	onds and Spectroscopic Techniques actions, ionic, covalent and metallic bonds; Import int bonded interactions in biomolecules, such as N hydrogen bonding; Energies and geometrics of heir roles in structure and conformation of biomo chniques: Principle, methodology and application an, ESR, Atomic absorption spectro Importance of chirality in biomolecules; Principle and ORD.	(15L) ance of /an der f these lecules. ions of oscopy. les and	
Unit II: Protein and Structure and Sta Ribonuclease A, o proteins by Ramac Covalent modifi adenylation, meth Synthetic protein protein polymer s acid targeting for polymer-protein h protein conjugate Biocatalytic appros	d Nucleic Acid Structures ability of Proteins: Myoglobin, Hemoglobin, Lys Carboxypeptidase and Chymotrypsin; Conforma chandran plot; N and C terminal analysis of protein cation of proteins: Acetylation, phosphor ylation, ribosylation, lipidation. modifications: Protein-based hybrid structure ystems; applications of protein polymer systems; synthetic protein modification; Synthetic approac hybrid structure; Non-covalent approaches for po s; Protein-nanopartcle hybrids via surface conju- aches for biohybrid structures.	(15L) sozyme, tion of s. ylation, es and Amino shes for olymer- igation; ; Triple	
helix; DNA superco Unit III: Supramole Viruses: Viral asso Influenza. Nucleic Acid Bindi turn-helix; Beta b expression. Metalloproteins: transport meta Ceruloplasmin); Troponin); Metal Transport protein invertebrate (haer	biling and topoisomerases. ecular Assemblies and Complex proteins embly; Capsid; Capsomere, eg., TMV, HIV, Ader ing Motifs in Proteins: Leucine zipper; Zinc fingers barrel; OB fold and their role in regulation of General principles of metal coordination; Stora alloproteins (Rubredoxin, Plastocyanin, F Signal-transduction metalloproteins (Calm loenzymes (Carbonic anhydrase, SOD, Hydrog ns: Oxygen transport proteins from vertebrar noglobin, hemoeryhtrin, cytochrome C), Albumin.	(15L) novirus, s; Helix- of gene ge and Ferritin, nodulin, renase). te and	
Unit IV: Biomolec Structural and fu between structur protein interac interactions: Prot	ular Structure and Diseases unctional aspects of proteins and DNA: Relation e and function and their role in human disease ctions; Protein-RNA interactions; Protein- cein aggregation; Non-enzymatic glycosylation (F	(15L) onships e; DNA- protein Protein-	

sugar interaction); Methods to study these interactions.
 Molecular basis of disease: methods for prevention, diagnosis, and treatment; Advanced techniques used in the diagnostics of diseases due to structural alteration.
 Diseases: Huntington's disease, Sickel-cell anemia; Cataract; Alzheimer's disease; p53 in cancer; Von Hippel-Lindau syndrome; Metabolic syndrome (Diabetes).

Practical:

PSLSCBMP303	Biomolecular Structure (60L)	2	04
	1. Protein purification methods:		
	 A. Isolation of casein from milk B. Purification of an enzyme by ion exchange chromatography/affinity chromatography C. Use of ammonium sulphate precipitation and dialysis 		
	D. Use of gel filtration E. SDS-PAGE		
	2. Polyacrylamide gel electrophoresis under non denaturing conditions		
	 A. Silver staining B. Activity staining of enzymes C. Determination of effect of acrylamide concentration on the mobility of proteins 3. Determination of melting temperature (Tm) of DNA. 4. Analysis of DNA 		
	 A. Estimation of DNA and RNA by UV absorption method B. Determination of purity of nucleic acids C. Conformational analysis of plasmid DNA by agarose gel electrophoresis (Oxidative/carbonyl stress induced damage). 		
	 Spectrofluorimetric analysis of proteins Determination of N- and C-terminal amino acids (demonstration). 		
	7. Protein aggregation studies by Congo Red and Thioflavin T.		
	 8. Generation and measurement of non-enzymatic glycosylated products (Protein/DNA). 9. Assay of transport protein (BSA) – esterase activity. 		
	10. Analysis of protein-sugar-DNA interactions		

- 1. K. Wilson and I. Walker, Practical Biochemistry, 5th edition, University press (2000)
- 2. Shawney, Practical Biochemistry

- 3. P. Asokan, Analytical Biochemistry. China publications, (2003)
- 4. David Frifelder, Physical Biochemistry, W. H. Freeman; 2nd edition (1982)
- 5. Sheehan, D. (2009) Physical Biochemistry: Principles and Applications. John Wiley & Sons Ltd., UK.
- 6. Branden, C. I. and Tooze, T.(1999) Introduction to Protein Structure. Garland Publishing, USA.
- 7. Lesk, A. M. (2004) Introduction to Protein Science: Architecture, Function and Genomics. Oxford University Press, UK.
- 8. Creighton, T.E. (1983) Proteins: Structures and Molecular Properties. W.H. Freeman and Co., USA.
- 9. Pain, R.H. (2000) Mechanism of Protein Folding. Oxford University Press, UK.
- 10. Arai, M. and Kuwajima, K. (2000) Advances in Protein Chemistry. Academic Press, USA
- 11. The Chemical Reactions of Living Cells: David E Metzler
- 12. William J. Marshall, Stephan K. Bangert, Elizabeth S.M. Ed. S.M (ed) Marshall, Clinical Biochemistry: Metabolic And Clinical Aspects by (2008) Publisher: Elsevier Science Health Science Div

Course Code	Course Code Title		Credits
PSLSCBMT304	Research Methodology and Quality Control	(60L)	4
Unit I: Research N	lethodology	(15L)	
Meaning of Resear of research – Des Qualitative, Conce	rch; Objectives of research, motivation in resear criptive, Analytical, Applied, Fundamental, Qua ptual, Empirical and Other Types of Research;	rch; Types antitative, Research	
Approaches; Research Methods vs. Methodology; Research and Scientific Method; Research Process: Steps of research process; Criteria of Good Research; Sampling, Sample size determination, Plan for data collection, Methods of data collection, Plan for data processing and analysis; Ethical considerations during research			
Unit II: Scientific v	vriting	(15L)	
Meaning of Scientific and non scientific writings; Structures of Research proposals, Synopsis, Dissertations, Thesis, Research paper writings (Abstract, Introduction, Review literature, methodology, Results, Discussions, Summary, Conclusion, Bibliography etc); Presentations: Graphical, Tabular, Animation, Power point etc			
Unit III: ISO Introduction: Over	Unit III: ISO (15L) Introduction: Over View of standards in ISO9000 Family		
Key principles: Key principles of ISO 9000- Quality Management System			
ISO 9001: Detailed study on ISO 9001:2015 standard, based on a seven principles of quality management, including a strong customer focus, the motivation and implication of top management, the process approach and continual improvement			
Application: Sector specific Application of ISO 9001- Quality Management System adapted by various industries			
Unit IV: GMP/ GLP (15L) Introduction: Good Manufacturing Practices (GMO) and Good Laboratory Practices (GLP) in Pharmaceutical Industries.			
Overview of GMPs is enforcement by the U.S. Food Drug Administration (US FDA) under Title 21 CFR			
Documentation requirement for GMP and GLP			
Case studies for D (Corrective action	ocumentation related to SOP preparation and C Preventive Action).	CAPA	

PSLSCBMP304	Dissertation in Literature Review	(60L)	2	04
	1. Project dissertation of literature review			

- 1. Kothari, C.R., 1985, Research Methodology Methods and Techniques, New Delhi, Wiley Eastern Limited.
- 2. Das, S.K., 1986, An Introduction to Research, Kolkata, Mukherjee and Company Pvt. Ltd.
- 3. Misra R.P., 1989, Research Methodology: A Handbook, New Delhi, Concept Publishing Company
- 4. Kumar, R., 2005, Research Methodology A Step-by-Step Guide for Beginners, (2nd.ed.), Singapore, Pearson Education.
- 5. Bhattachraya, D.K., 2006, Research Methodology, (2nd.ed.), New Delhi, Excel Books.
- 6. Panneerselvam R., 2012, Research Methodology, New Delhi, PHI Learning Pvt. Ltd.
- 7. ISO 9000 quality systems handbook fourth edition by David Hoyle
- 8. International standard iso9001 : quality management systems requirements fifth edition 2015-09-15.
- 9. Pharmaceutical quality assurance for students of pharmacy, @nd edition Dec.2007.by Mr. manohar a. Potdar. NiraliPrakashan.
- 10. How to Practice GMPs 7th ed. by P.P. Sharma ,Seventh edition 2015.
- 11. Hand Book, Good Laboratory Practices: Quality practices for regulated non-clinical research and development, 2nd Edition, 2009.
- 12. The Oxford Book of Modern Science Writing (Oxford Landmark Science) 2009 by Richard Dawkins (Author, Editor)
- 13. Writing Science: How to Write Papers That Get Cited and Proposals That Get Funded (2012) by Joshua Schimel (Author)
- 14. The Best of the Best of American Science Writing (The Best American Science Writing) 2010 by Jesse Cohen (Author)
- 15. From Research to Manuscript A Guide to Scientific Writing (Second Edition) By Katz, Michael J. (Springer Publication)

M.Sc. Part – II Life Sciences Syllabus Restructured for Credit Based Semester and Grading System To be implemented from the Academic year 2017-2018 Semester IV Detailed Syllabus

Course Code	Course Code Title		Credits
PSLSCBMT401	Molecular Cell Biology	(60L)	4
Unit I: Cell Division Cell division and c control of cell c Programmed Cell by Genes and p domains and their and disease; Casp autophagy, Carcinogenesis: C carcinogenesis; mo CEA, hCG; Telome aging.	and Apoptosis cell cycle: Meiosis: its regulation, steps in cell of ycle. Cell-cell fusion in normal and abnorr Death: Regulation of Apoptosis; Induction and roteins involved in apoptosis; Receptors with signalling pathways; Role of apoptosis in dev pase-independent pathways eg., Necrosis, ne mitotic cat characteristics of cancerous cells; Agents pro- polecular basis of cancer therapy, Tumor marke- ere replication; Telomerase and its role in cat	(15L) cycle, and nal cells. Inhibition ith death elopment crotopsis, castrophy. oromoting ers - AFP, ancer and	
Unit III: Biomembra Biomembranes: proteins, their so reconstitution; Lip Nuclear pore co transport; Role i import–export cyc Molecules of the intermediary filan tubulin, examples function, eg., dyn proteins on microv	rane and Cell Matrix Structure and assembly; Orientation of molubilisation with detergents and enzymes; Notes on their application in biology and complex: Structure; Assembly and disassem not macromolecular exchange and regulation le matrix: Proteins of the microfilament, microtuments; Structure, properties and assembly of a and roles of these filaments in cell structure amics and roles of kinesin and dynein; Organ villus; Cell-cell/cell-matrix interactions.	(15L) nembrane fembrane medicine bly; RNA ; nuclear bules and actin and cture and ization of	
Unit III: Protein Tra N-glycosylation in proteosomal degra Intracellular and in pathways in pro- sequences; Co-tr Targeting of mitoco Vesicle biogenesis polypeptides (solu SNAREs; Methods transport	afficking and Targeting the ER and Golgi (quality control, UPR, Endation membrane protein trafficking and targeting; karyotes and eukaryotes; Endocytic pathway anslational transport (protease protection hondrial, chloroplast, peroxisomal and nuclear s and ER to Golgi transport; ER transloo uble and transmembrane); ER chaperons; SN of studying Protein Transport; Disorders o	(15L) RAD and Secretory /s; Signal n assay); proteins; cation of NAPs and of protein	
Unit IV: Gene silen Gene silencing: H	cing and Epigenetics listorical background; RNA interference as r	(15L) egulatory	

mechanism in eukaryotes; Slicer and dicer; Synthesis and function of RNAi molecules in plants; Gene silencing mechanisms; RNAi-based gene therapy; Chromatin remodelling in human disease and diagnosis **Epigenetics:** Background, chromosomal inheritance taking fission yeast as an example; DNA methyltransferases, DNA methylation maintenance; Histone modification and regulation of chromatin structure; Bivalent histones; Histone demethylation; Epigenetic therapy; Epigenetic regulation of gene expression

Practical:

PSLSCP401	Molecular Cell Biology (60L)	2	04
	1. Preparation of lipid bilayer vesicles (liposomes) using		
	the purified lipids		
	2. Effect of detergents on membranes		
	3. Protease protection assay to study protein transport		
	and secretion		
	4. Isolation of DNA and demonstration of apoptosis of		
	DNA laddering		
	5. MTT assay for cell viability and growth		
	6. UV damage and repair mechanism in <i>Escherichia coli</i> or		
	Serratia marcescens		
	7. Synthesis of siRNA		
	8. Histone modification assays		

- 1. Kleinsmith and Harden, The World of the cell, Becker, Academic Internet Publishers; 5th edition (2006)
- 2. Geoffrey M. Cooper and Robert E. Hausman. The Cell: A Molecular Approach, Fourth Edition
- 3. Harvey Lodish. Molecular cell Biology. W. H. Freeman; Sol edition (2007)
- 4. Alberts B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. (2002) Molecular Biology of the Cell. Garland Publishing, Taylor & Francis Group, USA.
- 5. Karp, J.G. (2007) Cell and Molecular Biology. John Wiley & Sons, USA.
- 6. Kleinsmith, L.J.and Kish, V.M. (1996) Principles of Cell & Molecular Biology. Second Edition. Harper Collins College Publishers, USA.
- 7. Pollard, T.D. and Earnshow, W.C.(2002) Principles of Cell and Molecular Biology, Saunders, USA.
- 8. Ross Dalbey (Editor), Protein Targeting, Transport, and Translocation:, Publisher: Academic Press; 1 edition (May 13, 2002)
- 9. T Gesteland et al. The RNA World Eds CSHL Press
- 10. Eds. Fire et. al. RNA Interference Technology: From Basic Science to Drug Development. Cambridge University Press,
- 11. Ed. Gregory J. Hannon. RNAi: A Guide to Gene Silencing. CSHL Press
- 12. Ed. Gordon G. Carmichael. RNA Silencing: Methods and Protocols CSHL Press
- 13. Ed. Ute Schepers, RNA Interference in Practice, Wiley-VCH GmbH & Co. KGaA.
- 14. B. M. Turner, Chromatin and Gene Regulation: Molecular Mechanisms in Epigenetics

Course Code	Course Code Title		Credits
PSLSCBMT402	Nitrogen Metabolism and Plant Biochemistry	(60L)	4
Unit II: Nucleotide Nucleotide Metak degradation of nu pyrimidine nucleo foluc acid in nuc ribonucleotide re polynucleotides; I of nucleotide me target for cancer,	e Metabolism polism: Role of nucleases and phosphodiesterase polism: Role of nucleases and degradation of puri tides and their regulation; Thymine biosynthesis; cleotide biosynthesis; Purine salvage pathway; eductase; Biosynthesis of deoxyribonucleotid nhibitors of nucleic acid biosynthesis; Inherited d tabolism; Anticancer drugs; Nucleotide metabo antiviral therapy and malaria.	(15L) as in the nes and Role of Role of es and isorders plism as	
Unit II: Nitrogen A Nitrogen Fixation mechanism of ac regulation; Hydrog Nitrate assimilatio nitrite reductase, regulation of nitu glutamine syntheta	Assimilation in Plants Nitrogenase complex; Electron transport cha tion of nitrogenase; Structure of 'NIF' genes gen uptake and bacterial hydrogenases. In in plants: Structural features of nitrate reduct incorporation of ammonia into organic com rate assimilation; Ammonium assimilating enz- ase, glutamate synthase and GDH.	(15L) ain and and its ase and pounds, ymes –	
Unit III: Photosynthesis and Secondary Metabolism(15L)Photosynthesis: Light harvesting complexes; plant mitochondrial electron transport and ATP synthesis; alternate oxidase; Carbon fixation by C3, C4 and CAM pathways; Photoprotective mechanisms; Photorespiration; Bioluminescence.Special features of secondary plant metabolism, terpenes (classification and biosynthesis), lignin, tannins, pigments, phytochrome, waxes, alkaloids; Biosynthesis of nicotine; Functions of alkaloids.			
Unit IV: Free radicals: Int Species (ROS/RNS) and Signal Transd oxidative stress; damage markers N in biological syster Antioxidants: Die components of a superoxide dismu chelators); Cl Role of free radic oxdidation, Lipid p their biological imp	als and Antioxidant Biology croduction & Chemistry of Reactive Oxygen/N croduction & Chemistry of Reactive Oxygen/N croduction; Glycation mediated free radicals; Carbo Beneficial Aspects of Oxidative Metabolism. O Methods of Detecting ROS/RNS; Detection of free ns; EPR spectroscopy principles and determination t-Derived Antioxidants; Enzymatic and non-en ntioxidative defense mechanism (catalase, per- tases, vitamins E and C, uric acid, glutathione memical scavengers; Antioxidant t als in development of diseases: Mechanisms of eroxidation, DNA oxidation. Types of oxidized lesi portance	(15L) Nitrogen yst; ROS onyl and ixidative radicals n. izymatic oxidase, e, metal therapy. Protein ions and	

Practical:

PSLSCBMP402	Nitrogen Metabolism and Plant Biochemistry (60L)	2	04
	1. Measurement of activity of plant nitrate assimilation enzymes		
	 A. Isolation of nitrate reductase from plants B. Effect of environmental factors and hormones (CO₂, light, pH, growth hormones) 		
	2. Measurement of free radicals by spectrophotometric method (Total phenolics, DPPH assay, ABTS assay, FRAP assay)		
	 3. Analysis of free radical scavengers and antioxidant enzymes (Assay of any one - peroxidase, catalase, phenol oxidase, ascorbic acid oxidase, SOD) 4. Generation and measurement of oxidative and carbonyl stress in proteins and DNA (Protein oxidation method/DNA cleavage assay) 		
	 Plant pigments A. Extraction of plant pigments from spinach B. Separation by column chromatography 		
	C. Determination of absorption spectra of plant pigments		

- 1. Campbell and Farrell: Biochemistry 4th ed. Brooks/Cole Pub Co.
- 2. Buchanan: Biochemistry and molecular Biology of Plant
- 3. Heldt Plant Biochemistry
- 4. Lubert Stryer, Biochemistry, W. H. Freeman; 6 editions (2006).
- 5. Voet and Voet, Fundamentals of Biochemistry:
- 6. Kuchel and Ralston, Biochemistry 1998. 2nd ed. Schaum's Outlines McGraw Hill.
- 7. Harper's Biochemistry: Murray, et al. 2003. 28th ed. McGraw Hill.
- 8. Nelson & Cox, Lehninger's Principle of Biochemistry
- 9. K.G Ramawat, Biotechnology: Secondary Metabolites (2000) Publisher: Science Publishers, U.S.
- 10. P.M Dey and J.B. Harborne, Plant Biochemistry (1997) Publisher: Academic Press
- 11. Prof David T. Dennis, Prof David H. Turpin, Dr Daniel D. Lefebvre and Dr David B. Layzell(Editors), Plant Metabolism by (1997) publisher: Longman
- 12. Packer L and Helumt S. Oxidative Stress and Inflammatory Mechanisms in Obesity, Diabetes, and the Metabolic Syndrome. CRC Press.
- 13. Milan Lazár, Free Radicals in Chemistry and Biology,
- 14. Barry Halliwell, Free Radicals in Biology and Medicine (Paperback), John Gutteridge
- 15. Barry Halliwell, DNA & Free Radicals (Textbook Binding), Okezie I. Aruoma (Editor)

Course Code	Title		Credits
PSLSCBMT403	Biomolecular Function	(60L)	4
Unit I: Protein folding and Engineering(15L)Protein Folding:Folding pathways; Intermediates of protein folding; Compact Intermediates; Hierarchical and non-heirarchical folding mechanisms; Molten globule structure; Role of chaperons (trigger factor, prefoldin), heat shock proteins (Hsp70, Hsp90), chaperonins (Group I & II) and enzymes in protein folding (PDI, PPI). Protein folding disorders. Protein Engineering Design and construction of novel proteins and enzymes using site-directed mutagenesis and Random/directed evolution strategies; Conformation of proteins in general and enzymes in particular; Effect of amino acids on structure of proteins; Energy status of a protein molecule, Structure- function relations of enzymes. Basic concepts for design of a new protein/enzyme molecule; Specific examples of enzyme engineering – Dihydrofolate reductase and Subtilisin.			
Unit II: Kinetics and Mechanism in Biological Systems(15L)Enzyme Kinetics: Enzyme catalysis and factors contributing to high catalytic rates; Molecular aspects of catalysis for specific enzyme substrate complexes (Lysozyme, carbonic anhydrase, carboxypeptidase and chymotrypsin); Multisite binding of ligands to proteins; Bohr's effect; Models of Allostery - MWC and KNF models Hill's equation coefficient; Kinetics of multi-substrate enzyme-catalysed reactions; Ping-pong bi-bi, random order and compulsory order mechanism. Immobilised enzymes: Methods and applications.			
Unit III: Metabolo Metabolomics: I characterization of and analysis by databases and res Plant metabolomi dynamics; Metabo ecotypes, rice). Transcriptomics: k clustering (Hierard under expression of	mics and Transcriptomics Modern Concept of metabolomics; Detection of metabolites; metabolite library; Metabolite Mass Spectrometry, NMR, LIF, LC-UV; Metabolite ource (e.g. MetaboLights). Ics: Plant stress responses, nutrigenomics, and me polite profiling in phenotyping and breeding (<i>Ara</i> possic concepts and technology, data normalization hical, k-means, SOM), detection of over expression (PCA). Modeling using Boolean Networks. EST, Un	(15L) on and isolation polomics etabolite <i>bidopsis</i> n, on and igene.	
Unit IV: Nanobiolo Introduction: Nan- in various fields viz Application: Golo liposomal formula Synthesis of nano Properties and O Fluorescence), X-r	BY oscience; Nanobiotechnology; Nanodevices; App . Physical and Chemical, Materials and Life Scienc d bonding proteins; Nanopharmaceuticals s ations; Membrane nanodiscs; Biosensors; Na ostructure: Physical, chemical and biological n Characterization of nanomaterials: Optical (L ay diffraction; Imaging and size (Electron mic	(15L) lications es. such as nowires. nethods. JV-Vis / roscopy,	

Light scattering, Zeta potential), Surface and composition (ECSA, EDAX, AFM/STM).

Practical:			
PSLSCBMP403	Biomolecular Function and Environmental Toxicology (60L)	2	04
	1. Protein denaturation by Guanidine hydrochloride/urea		
	2. Enzyme inhibition		
	A. Inhibition of enzyme activity		
	B. Determination of Ki values		
	3. Immobilization studies:		
	A. Preparation of urease entrapped in alginate beads		
	and determination of percent entrapment		
	B. Study of the kinetics of the rate of urea hydrolysis		
	by urease entrapped alginate beads		
	C. Study of reusability and storage stability of urease		
	entrapped alginate beads		
	D. Immobilization of urease by covalent attachment		
	to solid support		
	4. Study of nanoparticles		
	A. Synthesis of Silver nanoparticles		
	B. Spectroscopic characterisation		
	5. Toxicity testing: Effect of chemicals on seeds		
	6. Cytotoxicity assay (onion root tip/pollen germination) to		
	estimate water contamination		

- 1. Lutz, S. and Bornschesser, U. T. (2008) Protein Engineering Handbook. Wiley-VCH,
- 2. Gary C. Howard, Modern Protein Chemistry: Practical Aspects Published: September 12, 2001 by CRC Press
- 3. Thomas E. Creighton, Proteins: Structures and Molecular Properties Publisher: W. H. Freeman 1992 Edition: Second Edition
- 4. Christian Müller (Editor), Protein Engineering Protocols (Methods in Molecular Biology) K, Publisher: Humana Press; Softcover reprint of hardcover 1st ed. 2007
- 5. Anders Liljas, Structural Aspects of Protein Synthesis Publisher: World Scientific Pub Co Inc; 1 edition (November 2004)
- 6. David S. Goodsell, Bionanotechnology: Lessons from Nature, 1st Edition, Wiley-Liss, 2004.
- 7. Nicholas C. Price, Lewis Stevens, and Lewis stevens, Fundamentals of Enzymology: The cell and molecular Biology of Catalytic Proteins by (2000) Publisher: Oxford University Press, USA
- 8. Alejandro G. Marangoni, Enzyme Kinetics: A modern Approach Book: Enzyme Kinetics: A Modern Approach, (2003) Publisher: Wiley-Interscience Enzyme Kinetics and Mechanisms by Taylor Publisher: Springer
- 9. W. Weckwerth, Metabolomics: Methods and Protocols, Humana Press, USA (2006).
- 10. M. Tomita and T. Nishioka, Metabolomics: The Frontier of Systems Biology, Springer Verlag, Japan (2005).

Course Code	Title	Credits
PSLSCBMT404	Drug Development and Environmental Toxicology (60L)	4
Unit I: Natura History of natu organisms; Pri lipids and the mechanism o fragrance, pigr Unit II: Activity Plant collection	I products(15L)ural drugs, Sources of natural drug ie Plants, Animals, Micro mary metabolites: carbohydrates, proteins, nucleic acids and eir importance to plants; Secondary metabolites: Types, f synthesis, Importance in plants and for mankind as nents, flavours and medicinesv Guided Drug Development(15L)on and Extract preparations: Methods of Plant collection, tion (cold, bot, critical fluid extraction atc), screening of	
solvent extraction (cold, hot, critical fluid extraction etc), screening of medicinal properties; Natural products: methods of identification (Qualitative and Quantitative), isolation and purification (Chromatography), Characterization (LC-MS, GC-MS, NMR, XRD, Elemental analysis etc); Bio efficacy studies: <i>In vitro</i> testing- Antimicrobial, Antidiabetic, Antioxidant, Antiinflammatory, antilarvicidal etc. Pre clinical and clinical trials.		
Unit III: Environmental toxicology(15L)Toxic chemicals in the environment (air and water): their effects and biochemical interactionsbiochemical interactionsBiochemical aspects: of arsenic, cadmium, lead, mercury, carbon monoxide, ozone and PAN pesticide; Mode of entry of toxic substance, its breakdown and detoxification; biotransformation of xenobiotics; Insecticides / Pesticides in environment, MIC effects.Carcinogens: in environment, chemical carcinogenicity, mechanism of carcinogenicity, environmental carcinogenicity testing.Enidemialogical iscues of toxic sompounds and metal poisoning		
Unit IV: Enviro Basics: Definiti (site) sampling, Analysis: physi Monitoring po Toxicity: testin Biosensors: me Environment In Principles of er Remote sens Monitoring. Geographical Geographical environmental	nmental monitoring(15L)on and environmental monitoring process; Sampling – land water sampling, air sampling. cal, chemical and biological analysis methods and process. Ilution: Bioindicators, Biomarkers. g using biological material. echanism, principle and working. mpact Assessment: EIA complete process, Importance of EIA. hvironmental mitigation and monitoring. ing: Principles and its applications in Environmental Information System (GIS): Concept of GIS; Types of Data.Importance of Geographical Information System in studies.	

PSLSCBMP404	Dissertation of Research Project	(60L)	2	04
	1. Project studies: presentation and preparation of	report		
	of observations and results			

- **1.** Chemistry of Natural Products by Sujata V. Bhat , B.A. Nagasampagi , Meenakshi Sivakumar (Springer Publication)
- 2. Indian Uses of Native Plants by Edith Van Allen Murphey
- **3.** Plant Taxonomy (2nd Edition) by Sharma
- 4. Plant Drug analysis by H. Wagner
- 5. Biochemistry and Molecular Biology of *Plants* by Bob B. *Buchanan*
- Plant Secondary Metabolites
 Volume 1: Biological and Therapeutic Significance
 Volume 2: Stimulation, Extraction, and Utilization by Kamlesh Prasad,
- 7. Vasudha Bansal Herbal Cosmetics & Ayurvedic Medicines by P. K. Chattopadhyay
- 8. Textbook of Clinical Trials by David Machin, Simon Day, Sylvan Green
- **9.** Plant Bioactives and Drug Discovery: Principles, Practice, and Perspectives 1st Edition Valdir Cechinel-Filho (Author), Wiley Publication.
- **10.** Drug Discovery from Plants By Angela A. Salim, Young-Won Chin, A. Douglas Kinghorn (Springer publication)
- **11.** Bioassay Methods in Natural Product Research and Drug Development By Lars Bohlin, Jan G. Bruhn (Springer Publication)
- **12.** An Introduction to environmental toxicology: Michael H.Dong.
- 13. Environmental biotechnology: Alan Scragg.
- 14. Remote Sensing and GIS: Basudev Bhatta