T.Y B.Sc. CHEMISTRY (3units) **Choice Based Credit System**

SEMESTER V

INORGANIC CHEMISTRY

COURSE CODE: USCH502 CREDITS: 01 LECTURES: 30

(Numericals and word problems are expected)		
UNIT-I	L/Week	
1. Molecular Symmetry and Chemical B	Bonding	
1.1Molecular Symmetry	(6L)	
1.1.1 Introduction and Importance of Sym	metry in Chemistry.	
1.1.2 Symmetry elements and Symmetry o	perations.	
1.1.3 Concept of a Point Group with illustr	rations using the	
following point groups :(i) $C_{\infty V}$ (ii) $D_{\infty h}$ (iii) C_{2V} (iv) C_{3v}		
$(v)C_{2h}$ and $(vi)D_{3h}$		
10 1/1 1/10 1/11/11 6 1 4		
1.2 Molecular Orbital Theory for heter	onuclear diatomic	
molecules and polyatomic species (9L)		
1.2.1 Comparision between homonuclear	and heteronuclear	
diatomic molecules.		
1.2.2. Heteronuclear diatomic molecules li appreciation of modified MO diagra		
1.2.3 Molecular orbital theory for H ₃ and	H ₃ ⁺ (correlation	

diagram expected).	
1.2.4. Molecular shape to molecular orbital approach in AB ₂	
molecules. Application of symmetry concepts for linear	
and angular species considering σ- bonding only.	
(Examples like : (i) BeH ₂ , (ii) H ₂ O).	
UNIT-II	
2.0 CHEMISTRY OF INNER TRANSITION ELEMENTS	
(15L)	
2.1 Introduction: , Position in periodic table and electronic	
configuration of lanthanides and actinides.	
2.2 Chemistry of Lanthanides with reference to (i) lanthanide	
contraction and its consequences(ii) Oxidation states (iii)	
ability to form complexes (iv) magnetic and spectral	
properties	
2.3 :Occurrence, extraction and separation of lanthanides by (i)	
Ion Exchange method and (ii) Solvent extraction method	
(Principles and technique)	
2.4 Applications of lanthanides	

References

SEM-V

Unit-I

- 1. Per Jensen and Philip R. Bunker , Fundamentals of Molecular Symmetry , Series in Chemical Physics, Taylor & Francis Group
- 2. J. S. Ogden, Introduction to Molecular Symmetry, Oxford University Press
- 3. <u>Derek W. Smith</u>, Molecular orbital theory in inorganic chemistry Publisher: Cambridge University Press
- 4. <u>C. J. Ballhausen, Carl Johan Ballhausen, Harry B. Gray</u> Molecular Orbital Theory: An Introductory Lecture Note and Reprint Volume <u>Frontiers in chemistry</u> Publisher W.A. Benjamin, 1965
- 5. Jack Barrett and Mounir A Malati, Fundamentals of Inorganic Chemistry, Affiliated East west Press Pvt. Ltd., New Delhi.
- 6. Satya Prakash, G.D.Tuli, R.D. Madan , , Advanced Inorganic Chemistry.S. Chand & Co Ltd

Unit-II

- 1. Cotton, Wilkinson, Murillo and Bochmann, Advanced Inorganic Chemistry, 6th Edition.
- 2. Greenwood, N.N. and Earnshaw, Chemistry of the Elements, Butterworth Heinemann. 1997.
- 3. Huheey, J.E., Inorganic Chemistry, Prentice Hall, 1993.
- 4. G. Singh, Chemistry of Lanthanides and Actinides, Discovery Publishing House
- 5. Simon Cotton, Lanthanide and Actinide Chemistry Publisher: Wiley-Blackwell

Practicals

SEMESTER V

INORGANIC CHEMISTRY

COURSE CODE: USCHP07 CREDITS: 01

I. Inorganic preparations

- 1. Preparation of Potassium diaquobis- (oxalato)cuprate (II)
- II. Determination of percentage purity of the given water soluble salt and qualitative detection w.r.t added cation and/or anion (qualitative analysis only by wet tests).

(Any two salts of transition metal ions)

Reference Books (practicals)

- 1. Vogel Textbook of Quantitative Chemical Analysis G.H. Jeffery, J. Basset.
- Advanced experiments in Inorganic Chemistry., G. N. Mukherjee., 1st Edn., 2010.,
 U.N.Dhur & Sons Pvt Ltd.
- 3. Vogel's. Textbook of. Macro and Semimicro qualitative inorganic analysis. Fifth edition.

SEMESTER VI

INORGANIC CHEMISTRY

COURSE CODE: USCH602 CREDITS: 01 LECTURES: 30

UNIT-I	L/week
1.Theories of the metal-ligand bond (I) (15L)	
1.1 Limitations of Valence Bond Theory.	
1.2 Crystal Field Theory and effect of crystal field on central metal valence orbitals in various geometries from linear to octahedral(from coordination number 2 to coordination number 6)	
1.3 Splitting of <i>d</i> orbitals in octahedral, square planar and tetrahedral crystal fields.	
1.4 Distortions from the octahedral geometry : (i) effect of ligand field and (ii) Jahn-Teller distortions.	
1.5 Crystal field splitting parameters Δ ; its calculation and factors affecting it in octahedral complexes, Spectrochemical series.	
1.6 Crystal field stabilization energy(CFSE), calculation of CFSE for octahedral complexes with d ⁰ to d ¹⁰ metal ion configurations.	
1.7 Consequences of crystal field splitting on various properties such as ionic radii, hydration energy and enthalpies of formation of metal complexes of the first transition series.	
1.8 Limitations of CFT: Evidences for covalence in metal complexes (i) intensities of d-d transitions, (ii) ESR spectrum of [IrCl ₆] ²⁻ (iii) Nephelauxetic effect.	

UNIT-II	
2 SOME SELECTED TOPICS	(15L)
2.1 Metallurgy	(7L)
2.1.1 Types of metallurgies,	
2.1.2 General steps of metallurgy; Concentrational calcinations, roasting, reduction and refine	
2.1.3Metallurgy of copper: occurrence, Physic Extraction of copper from pyrites& ref	• •
2.2 Chemistry of Group 18	(5L)
2.2.1 Historical perspectives	
2.2.2 General characteristics and trends in phy properties	rsical and chemical
2.2.3 Isolation of noble gases	
2.2.4 Compounds of Xenon (oxides and fluorides) with respect to preparation and structure (VSEPR)	
2.2.5 Uses of noble gases	
2.3 Introduction to Bioinorganic Chemistry	. (3L)
2.3.1Essential and non essential elements in b	piological systems.
2.3.2 Biological importance of metal ions such and Cu ⁺² (Role of Na ⁺ and K ⁺ w.r.t. ion p	

REFERENCES:

SEM VI

- 1. Geoffrey A. Lawrance Introduction to Coordination Chemistry John Wiley & Sons.
- 2. R. K. Sharma Text Book of Coordination Chemistry Discovery Publishing House
- 3. R. Gopalan, V. Ramalingam Concise Coordination Chemistry, Vikas Publishing House;
- 4. Shukla P R, Advance Coordination Chemistry, Himalaya Publishing House
- 5. Glen E. Rodgers, Descriptive Inorganic, Coordination, and Solid-State Chemistry Publisher: Thomson Brooks/Cole

Unit-II

- 1 R. Gopalan, Inorganic Chemistry for Undergraduates, Universities Press India.
- 2 D. F. Shriver and P. W. Atkins, Inorganic chemistry, 3rd edition, Oxford University Press
- 3 Cotton, Wilkinson, Murillo and Bochmann, Advanced Inorganic Chemistry, 6th Edition.
- 4 Jack Barrett and Mounir A Malati, Fundamentals of Inorganic Chemistry, Affiliated East west Press Pvt. Ltd., New Delhi.
- 5 R.Gopalan, Chemistry for undergraduates. Chapter 18. Principles of Metallurgy.(567-591)
- 6 Puri ,Sharma Kalia Inorganic chemistry. Chapter 10, Metals and metallurgy.(328-339)
- 7 Greenwood, N.N. and Earnshaw, Chemistry of the Elements, Butterworth Heinemann. 1997.
- 8 Huheey, J.E., Inorganic Chemistry, Prentice Hall, 1993.
- 9 Lippard, S.J. & Berg, J.M. Principles of Bioinorganic Chemistry Panima Publishing Company 1994.
- 10 Satya Prakash, G.D.Tuli, R.D. Madan , , Advanced Inorganic Chemistry.S. Chand & Co Ltd

Practicals

SEMESTER V

INORGANIC CHEMISTRY

COURSE CODE: USCHP08 CREDITS: 01

I. Inorganic preparations

Preparation of Tris(acetylacetonato) iron(III)

II. Determination of percentage purity of the given water soluble salt and qualitative detection w.r.t added cation and/or anion (qualitative analysis only by wet tests).

(Any three salts of main group metal ions)

Reference Books (practicals)

- 4. Vogel Textbook of Quantitative Chemical Analysis G.H. Jeffery, J. Basset.
- 5. Advanced experiments in Inorganic Chemistry., G. N. Mukherjee., 1st Edn., 2010., U.N.Dhur & Sons Pvt Ltd.
- 6. Vogel's. Textbook of. Macro and Semimicro qualitative inorganic analysis. Fifth edition.