UNIVERSITY OF MUMBAI

No. UG/7 | of 2016-17

CIRCULAR:-

A reference is invited to the Syllabi relating to the M.Sc. degree programmes vide this office Circular No.UG/25 of 2013-14 dated 13th May, 2013 and the Head, University Department of Bio-Physics and the Principals of affiliated Colleges in Science and Heads of the recognized Science Institutions concerned are hereby informed that the recommendation made by Board of Studies in Bio-Physics in at its meeting held on 25th May, 2016 has been accepted by the Academic Council at its meeting held on 24th June, 2016 vide item No.4.33 and that in accordance therewith, the revised syllabus as per Choice Based Credit System for (Sem. I to IV) of M.Sc. degree Programmes in the course of Bio-Physics, which is available on the University's web site (www.mu.ac.in) and that the same has been brought into force with effect from the academic year 2016-17.

MUMBAI - 400 032 alstSeptember, 2016

(Dr.M.A.Khan) REGISTRAR

To,

The Head, University Department of Bio-Physics and the Principals of affiliated Colleges in Science and Heads of the recognized Science Institutions concerned.

A.C/4.33 /24/06/2016

MUMBAI-400 032

21 September, 2016

No. UG/71 -A of 2016-17 Copy forwarded with compliments for information to:-

1) The Dean, Faculty of Science,

2) The Chairman, Board of Studies in Bio-Physics

3) The Director, Board of College and University Development,

4) The Professor-cum- Director, Institute of Distance and Open Learning (IDOL),

5) The Controller of Examinations,

6) The Co-Ordinator, University Computerization Centre.

12/5/16 (Dr.M.A.Khan) REGISTRAR

PTO

UNIVERSITY OF MUMBAI

Syllabus for the M.Sc. Part - I Program: M.Sc. Course: Biophysics

(Chose Based credit System with effect from the academic year 2016–2017)

Preamble

The subject of Biophysics is one of the important interdisciplinary areas in teaching, training and learning which is considered to be important in terms of human resource development and National development. Biophysics is the physics of life phenomenon studied at all level, from molecules and cell to the biosphere as whole. It is the branch of knowledge that applies the principles of physics and chemistry and the methods of mathematical analysis and computer modeling to understand how biological systems work.

The main emphasis of biophysics is on the quantitative analysis of the physical and chemical aspects of the functions of biological molecules, organisms and entities. The techniques and methodologies that biophysics relies on are closer to Physics and Chemistry, but areas of application are in the biological, medical and related sciences

Biophysicists use mainly that technique includes UV visible spectroscopy, Gel electrophoresis, X-ray crystallography, macrocalorimetry, Atomic Force Microscopey, FTIR, Raman, SPR, NMR, Fluorescence spectroscopy, Fluorescence Microscopy & spectroscopy, hydrodynamics techniques etc., are used to study problem in exciting areas in biophysics ranging from structure aided drug design to cell signalling and transcriptional silencing etc. Biophysicist's are employed in Universities, R & D industry, Medical centres/Colleges, Research Institutes and Government Organisation etc.

The two year programme of M.Sc. (Biophysics) is prescribed according to the choice based credit system of the University of Mumbai from the academic year 2016-17. The course has been divided in to four semesters. The program has a total of 14 core papers, 14 number of laboratory courses, research projects, review of literature and elective papers like Virology, Bacteriology, Medicine chemistry & drug design, Ethics and IPR etc. Invited lectures by subject expert in various areas as well as seminars and workshops add value to the course and enhance their potential. In addition the students are encouraged to attend seminars outside the department as well as attend summer internship in prestigious laboratories in India as well as abroad.

The programme endeavours to provide students a broad based training in Biophysics with strong background of basic concepts as well as exposing them to recent advances in the field. The programme is focussed on recent developments in the areas of biophysics. In addition, theoretical knowledge, significant emphasis has been given to provide hands on experience to the students in the frontier areas of Biophysics. A multidisciplinary approach has been employed to provide best leverage to students to enable them to move into advanced and frontier areas of biological research in future. Another important feature of course is that a sufficient number of elective papers have been introduced as results student may particular subject of their interest. Hence, apart from the core and elective papers an additional paper is introduced on soft skill as per the guideline given by University of Mumbai. This will enable the addition of new dimension in learning and research skill of students.

Revised syllabus of M.Sc. Biophysics (Choice Based Credit system)

Semester I

Paper code	Paper nomenclature	Lectur	Credit	Practical/Labor	Hrs	Credit	Total
DD CCT 101		es	0.4	atory course		0.0	Credit
BP-CC1 101	General physico-chemical	60	04	Lab course	60	02	06
	Principles			(BP-LBC)			
				101			
BP-CCT 102	Biomathematics &	60	04	Lab course	60	02	06
	Biostatistics			(BP-LBC)			
				102			
BP-CCT 103	Cellular Biophysics	60	04	Lab course	60	02	06
				(BP-LBC)			
				103			
BP-CCT 104	Methods in Biophysics	60	04	Lab course	60	02	06
				(BP-LBC)			
				104			
	Total						24
	Semester II						
BP-CCT 201	Membrane Biophysics &	60	04	Lab course	60	02	06
	Ion channels			(BP-LBC)			
				201			
					- 0		
BP-CCT 202	Molecular Biophysics	60	04	Lab course	60	02	06
				(BP-LBC)			
				202			
BP-CCT 203	Biochemistry	60	04	Lah course	60	02	06
	Diochemistry	00	01	(BP-I BC)	00	02	00
				(DI - LDC)			
				203			
BP-CCT 204	Recombinant DNA	60	04	Lab course	60	02	06
	Technology & Protein			(BP-LBC)			
	Engineering			204			
	Total						24

Semester III

Paper code	Paper nomenclature	Lectur	Credit	Practical	Hrs	Credi	Total Credit
		es		Paper		t	
BP-CCT 301	Core Core theory	60	04	Lab course	60	02	06
				(BP-LBC)			
				301			
BP-CCT 302	Core Core theory	60	04	Lab course	60	02	06
				(BP-LBC)			

							20+ 04* =24 (*electives)
BP-ECL 403	Elective-3 ,4n	30	02				
BP-ELC402	Elective -2	30	02				
BP-ELC 401	Elective -1	30	02				
				Research project		02	02
				403	-		
BP-CCT 203	Core Core theory	60	04	402 Lab course	60	02	06
BP-CCT 202	Core Core theory	60	04	Lab course	60	02	06
BP-CCT 201	Core Core theory	60	04	Labcourse401	60	02	06
	Semester IV						
	Total						20+4* =24 (*electives)
BP-ELC302	Elective -3, 4n	30	02				
BP-ECL 302	Elective -2	30	02				
DI-ELC 301		50	02				
BP-FLC 301	Flootive 1	20	02	project			
				review / research project			
				Literature	60	02	02
				(BP-LBC) 303			
BP-CCT 303	Core Core theory	60	04	302	60	02	06
		1				-	1

No of credit: M.Sc. I (Sem I & II) = 48 No of credit MSc II (Sem III & IV) = 40 No of credit for electives (Sem III & IV) = 08 Total credits: = 96 BP-CCT: Biophysics core course theory BP-ELC: Biophysics elective course BP-LBC : Biophysics Lab course

Evaluation: The students will be evaluated internally and externally. The internal evaluation is done by teachers and external evaluation done by the committee appointed by the University norms. Standard passing and scale as per the university norms.

Syllabus details Semester I

Course Code	Title	Credits
BP-CCT 101	General Physico-chemical Principles	04
	Total lectures: 60	04
Unit I: Structur		
The electronic st der Waals forc interactions. Ge Principle, Ioni Electronegativity		
Interatomic pote central forces, Be	entials for strong bonds, Interatomic potential for weak bonds, Non- ond energies, Spring constants. (15L)	
Unit II: Thermo	odynamics & Principles of kinetics and Molecules	
Thermodynamic Enthalpy and f Oxidation reduct Rate constant, tension, Dialys filtration of bio Precipitation, Bio & electrical prop living systems.	e equilibrium, laws of thermodynamics and living system, Entropy, ree energy, Internal energy, Carnot cycle, Chemical potential, tion potential. 0 th , I st , 2 nd & 3 rd order reaction, Activation energy and Diffusion, Osmosis, Osmotic pressure, Osmoregulation, Surface is, Adsorption, Viscosity, Thermal conduction, Sedimentation logical fluid, Hydropathy, Biological importance of hydropathies. cological significance of precipitation, Colloids & their types, Kinetic perties of colloids, Stability of colloids, Gibbs Donnan Equilibrium in 15L	
Unit III: Solven	t, Solute & Solution in Biological System	
Liquids, Solvent solutions, Dilute of concentration	as, Solubility, Saturated and unsaturated Solutions, Super saturated and concentrated solution, types of solutions, Methods of expression of solution, Molality, Mole fraction.	
Hydrogen ion concentration of & Basic solution and their dissocia acid strength, (0 importance in bio	concentration, Dissociation of water, (water as electrolyte), equilibrium, Mechanisms of Ionization and Characterization, Acid as, pH and its biological importance, General concept of acid, bases ation constant, Bronsted-Lowry theory, Inductive effect of groups on Carboxyl group, Carbonyl group). Salts & their characteristics & blogical system.	
Biological Impo solution, mechan Henderson and Phosphate, Prote	rtance of Acids & Bases, Biological & buffering system, Buffer nism of buffer action, Factors influencing buffer capacity and pH, Hasselbadch equation, Buffer systems in the body. (Bicarbonate, in buffer, Ammonia buffer, etc.) 15L	
Unit IV: Radioa	octivity	
Energy of Radia detection of n	tion, Radioactive emission, α -ray, β -ray, Υ -ray, and their properties, uclear radiation, Geiger-Muller counter, Proportional counter,	

Scintillation counter, Liquid Scintillation counter, Crystal counter, Radioactive	
decay, (α , β ,decay), Half-life, Units of measurements of radioactivity, types of	
radioactivity, Isotopes, Isobar, Isotones and their characteristics. Radioactive	
equilibrium, Variety of isotopes, Radioactive isotopes, Nuclear reaction and	
production of artificial radioactivity, Autoradiography. 15L	
References:	
1. Physical Chemistry for Life Sciences, Peter Atkins and Julio de Paula, 2006, Oxford	
Press	
2. Introduction to Biophysics by Cortell	
3. Molecular and Cellular Biophysics, Meyer B Jackson (2006), Cambridge)	
4. Tex Book of Biophysics, R N Roy, New Central Agency (P) Ltd, Culcutta	
5. Physical Chemistry for the Biosciences, Raymond Chang,(2004), University book	
Science Biological Thermodyanamics, Donald, T Hayine, (2007), Cambridge	

Course Code	Title	Credits		
BP-CCT 102	Biomathematics & Biostatistics Total lectures: 60	04		
Unit I:Biomathema	tics			
Limits of functions,	derivatives of functions. Probability Calculation, Differential and			
integral calculus,	Derivative and its physical significance, basic rules for			
differentiation (Wi	thout derivation) Maximum and Minimum their application in			
chemistry, Geometr	ic meaning of integration, application in biology and chemistry.			
	(15L)			
Unit II: Biostatisti	cs I			
1. Introduction, sco	pe, application and use of statistics, collection and classification			
Of data, census and	sampling, graphs and diagrams, arithmetic mean, median standard			
Deviation.				
2.Correlation and re	gression for ungrouped data, scatter diagram, calculation and			
interpretation of con	rrelation coefficient, linear regression coefficients and equation of			
the Lines of regre	ssion, nonlinear relationship transformable to liner form (Y=Ab ^x ,			
Ya ^x b)				
3. Probability, defin	nition, addition and multiplicative laws (without proof). Random			
variable and its of	distribution, binominal probability distribution, examples and			
conditions means a	and variances, continuous variable, normal distribution, use of			
normal probability table for finding probabilities. (15L)				
Unit III: Biostatistics II:				
1. Population parameter and sample statistics, sampling techniques, simple random				
sampling stratified i	random sampling, systematic sampling standard error of mean.			
2. Estimation, Point & interval, confidence interval for proportion.				

 3.Hypothesis attesting, Type I and Type II errors levels of significance, one-tailed and two tailed test, application to single proportion, equality of the population means and two population proportions. 4. Chi-square test for independent attributes in r x c table, special case of 2 x 2 tables. 5. Students test for significance of correlation coefficient y for p=0 (small sample test) (15L) 			
Unit IV: Biostatistics III			
1.Fishers z transformation coefficient for getting yp-0 in large samples test of			
significance for y (p=0)			
2Design of experiment: Principle and concepts of completely randomized design,			
randomized block design and Latin square design,			
3.variance ratio F-test-Analysis of variance in one-way classification .			
4.Non-parametric test: Distribution-free method, sign test for method pairs, Wilcoxon			
test for unpaired data Run test. (15L)			
(102)			
References:			
 Biostastistics: A foundation for analysis in the Health Sciences, 7th Ed.(1998) Wayne D, Wiley 			
2. DNA Microarrays, David Bowtell & J Sambrook (2002), CSHL Press			
3. Principles of Statistics, 2 nd Ed. M Pagano & K Gauvreau (2007), Thomson Publ			

Course Code	Title	Credits
BP-CCT 103	Cellular Biophysics Total lectures: 60	04
Unit I: General		
Origin and evo prokaryotic and functions, Proka physical and bio properties an (15L)	lution of cell, shape and size of cell; General organization of eukaryotic organisms basic concepts and their detailed structure and ryotic cell wall, Eukaryotic cell wall, their functions, ribosomes, ological properties of protoplasm. Cytoskeleton – basic components, d functions in prokaryotic and eukaryotic cells.	
Unit II: Cell Dif	ferentiation	
Cell differentiati	on, localization of cytoplasm determinants in eggs, localization of	
yolk and cytopla		
function, Extrace		
related response	, modulation of extracellular matrix by tumor cells - Fibroblast	
interactions, gro	owth factors in cultured cells - early cytoplasm, single and	
cytoskeleton res	ponse; Role of cytoskeleton in maintaining cell-shape, contraction,	

behavior, apoptosis and mortality, impact of xenobiotic on the components of cytoskeleton. (15L)	
Unit III: Cell growth and cell division	
Kinetics of cell growth, role of protein kinase in cell growth, cell cycle, cell cycle events G_1 , S, G_2 , cytokines, control of cell cycle in dividing and non-dividing cells, synchronization of cell growth, cell transformation, malignant tumor growth, apoptosis. Intra and extracellular factors and signals affecting cell growth, cell division, cellular behavior during cytokinesis, chemotaxis and asymmetrical cell division. (15L)	
Unit IV : Cell-Cell Communication	
Strategies of chemical signaling: endocrine, paracrine and synaptic. Signaling	
mediated by intracellular receptors: mechanism of transduction by cell surface	
receptor protein, role of calmodulin, Calcium and cyclic nucleotides, phosphoinositol	
cycle, sodium proton exchanger, molecular events involved during sperm-ovum (egg)	
interaction, implications and the mechanisms of sperm-zone interaction, role of	
soluble factors produced by follicle somatic cells on gamete interactions, factors	
influencing sperm –ovum (egg) recognition and binding, morphological intercellular	
connections in different types of cell and tissues. (15L)	
References:	
1. Molecular Biology of the Cell, Bruce Albert, Alexander Jhonson et al (2002),	
Taylor & Francis Group.	
2. The Cell Molecular Approach, G Cooper & R Hausman (2007) ASM Press	
3. Molecular Biology, D Roberties, 8 ^{ee} Ed. SAE	
4. Biochemistry by Strayer	
5. Introduction to Biological Memorane, D Chapman 6. Molecular Cell Biology Lodish	
7. Molecular and Cellular Biophysics. Mever B Jackson (2006). Cambridge)	

Course Code	Title	Credits
BP-CCT 104	Methods in Biophysics Total lectures: 60	4
Unit I: Spectros	scopy	
Principle, instrume of light, radiation double beam instrumental featu applications. CD		
phosphorescence, transfer, and applie	bioluminescence and chemiluminiscence phenomenon, quenching, energy cations. Atomic absorption spectroscopy: Principle and instrumentations.	

Unit II: Microscopy	
Principle, instrumentation and application of microscopy, image formation, magnification, resolving power. optimum resolution, image defects, different types of Microscopy: Dark field ,Phase contrast, polarization microscopy, Interference microscopy, Fluorescence microscopy, Electron microscopy: Electron guns, Electron lens, electrostatic focussing, magnetic focussing, SEM, STEM, Atomic force microscopy. (15L)	
Unit III: Separation techniques I Electrokinetics methods: electrophoresis, electrophoretic mobility (EPM), factors affecting EPM, Paper, PAGE, SDS-PAGE, Disc gel, gradient gel, electrophoresis of nucleic acid and its application, Pulse field electrophoresis, single cell gel electrophoresis, Isolectrophoresis, preparative electrophoresis, 2-D gel electrophoresis, Capillary, Iso-Electric focusing, applications in biology and medicine. Chromatography, TLC, adsorption, partition, ion exchange , gel filtration, affinity and FPLC, GLC	
(15L)	
HPLC: mobile phase systems, modes of operations, application, Hydrodynamics	
method :fundamental principles' Centrifugation: principle, preparative centrifuge, analytical, ultracentrifuge, sedimentation and diffusion, Ultracentrifugation and their applications in molecular weight, size determination. Viscosity and its application, dialysis, solvent fractionation, isoelectric precipitation,	
method :fundamental principles' Centrifugation: principle, preparative centrifuge, analytical, ultracentrifuge, sedimentation and diffusion, Ultracentrifugation and their applications in molecular weight, size determination. Viscosity and its application, dialysis, solvent fractionation, isoelectric precipitation, (15L)	

Syllabus details Semester II

Course Code	Title	Credits			
BP-CCT 201	Membrane Biophysics & Ion channels Total lectures: 60	4			
Unit I:: Membr					
Membrane arch					
permeability, transmembrane helices, hydropath Plot, Membrane asymmetry,					
Membrane fluid	ity, Functional reconstitution of membranes. Models of membrane				

fusion: bilayer fusion, viral fusion, cellular fusion, SNAREs, cell-cell fusion, fusion in mitochondria, Lipid bilayer and early models, Fluids mosaic model, Evidence from model system and biomembranes. Membrane Channels, voltage gated channels,	
ligand gated channels, channel conductance, (15L)	
Unit II: Physics of membrane	
Membrane deformations: bending, sharing shape fluctuation etc, Differential geometry of membranes, Elastic properties, Elastic constants, Charge-induced microstructures and domain. Hysteresis of domains formation, Lateral phase separation, Critical concentrations fluctuation, selective lipid protein interactions, Membrane melting. (15L)	
Unit III: Membrane transport	
Transport system with non-electrolytes and electrolytes. Transport with chemical reaction system: Primary and secondary active transport. Transports of molecules by simple and facilitated diffusion, Transport by flux coupling. Transport by phosphotransferase system, Transport by vesicle formation, Ionophores, epithelial transport.	
Electron Transport & oxidative phosporylation: Reduction potential and free energy changes in redox reaction, organization of electron treansport chain, chemiosmotic coupling, proton gradient drive and synthesis of ATP, P/O ratio for oxidative	
phosporylation, Cytosolic NADH electron feeding into electron transfer.	
(15L)	
Unit IV: Electrical properties of membranes & Lipid Membrane Technology Cell surface charge, Resting membrane potential, Action potential, properties of action potential, Nernst equation, Goldman equation, Nernst-Plank equation, Hodgkin-Huxely equation, Hodking-Kartz experiment, Voltage clamp, Na+, K+ conductance, Membrane impedance and capacitance, Transmembrane potential, Zeta, stern and total electrochemical potential, Chemical synapse, post synaptic potential, Historical perspective of lipid model systems lipid monolayer. Liposomes: small and large unilamellar and multilamellar vesicles, planner lipid bilayer, Application of liposomes in biology and medicine. (15L)	
 References: Molecular & Cellular Biology, D Roberties, Biophysical Aspects of Transmembrane signaling, Sandor D (2005), Springer Biophysics, Vasant Pattabhi, Gautam (2002), Narosa Biomembrane structure and Function, Chapman D. Introduction to Biological Membrane, Jain R K Biophysics, Hopp, Lohman, Mark and Ziegler Advances in Biophysics, Vol 18, 15 Molecular and Cellular Biophysics, Meyer B Jackson (2006), Cambridge) 	

Course Code	Title	Credits
BP-CCT 202	BP-CCT 202 Molecular Biophysics	
Unit I. Principl	Total lectures: 60	
Basics aspects potential energy hydrophobic & h systems, Disrup hydrophobic ver cystine, formatio	of protein structure, Polypeptide chain geometrics, estimates of y, results of potential energy calculations, hydrogen bonding, nydrophilic interactions and water as universal solvent in biological otion of hydrophobic interactions by urea, ionic interactions, rsus ionic interactions, Disulfide bond, Ways of pairing N-half on of specific disulfide link, prediction of protein structure. (15L)	
Unit II: Protein	structure & stability	
Principles of ion Predicting prope structure sequent structure alpha a Ramchandran p Quaternary struc- arrangement of s rules, pathways a	nization equilibrium ionization of side chain, equilibria in proteins. erties from amino acid composition, Usual amino acids. Primary cing of polypeptide, hemoglobin, homologies in proteins, Secondary and beta conformation, collagen structure, stability of alpha helix, lot, Tertiary structure, structure of myoglobin and hemoglobin, cture, symmetry consideration, Analysis of subunits and chain subunits, stability of globular quaternary structure. Protein folding and kinetics (15L)	
Unit III: Enzy	me structure & mechanisms	
Enzymes, classif enzyme action lysozyme, Enzy competitive, nor behaviour, ligand V _{max} , K _m , variou	Fication & structure, active site and its identification, mechanisms of with special reference to chymotrypsin, carboxypeptidase and rme kinetics, Michaelis-Menten equation, Inhibitors, kinetics of a competitive and uncompetitive inhibitors, Allosteric cooperative d protein interaction, Hill equation, Mettaloenzymes. Determination as graphical plots. (15L)	
Unit IV: Glycob	piology & Lipids	
carbohydrates, c and proteoglyc polysaccharides,	lassification and types, stereochemistry, mutarotation, glycoprotein can, Biosynthesis of glycoprotein, structure and roles of lipids: types of lipids, classification and biological significance (15L)	
References:		
 Biophysic Cantor and Applied E (2007), W 	al Chemistry, The Behaviour of biological macromolecules, Vol I,II, III, d Schimmel, (2008), W H Freeman & Co Biophysics, A Molecualr Approach for Physical Scientist, Tom A Weigh, iley	

3.	Introduction to Protein Sciences, Arthur M Lesk (2004), Oxford Press	
4.	Molecular and Cellular Biophysics, Meyer B Jackson (2006), Cambridge)	
5.	Chemical Biophysics, Daniel A Beard and Hong Q (2008), Cambridge Univ Press	
6.	Proteins Structure & Function, David Whitford (2005), Wiley	
7.	Introduction to Protein Structure, Carl Brenden & John Tooze (1999), Garland Publ,	
	NY	
8.	Essentials of Biophysics, P Narayanan (2005), New Age Publ.	
9.	Physical Chemistry for Biomedical Sciences, S R Logan, (1998), Taylor & Francis.	
10.	Handbook of Molecular Biophysics (Methods & Application), 2009, HG Bohr,	
	Wiley	
11.	Principal of Protein Structure, GE Schulz, RH Schirmer (2004), Springer	

Course Code	Title	Credits
BP-CCT 203	Biochemistry Total lectures: 60	4
Unit I: Hormon		
cAMP/cGMP, G	protein and G protein family receptor, G protein cascades, c-AMP	
and protein kinas	se, protein phosporylation, Inositol triphosphate and DAG signals	
	(15L)	
Unit II: DNA st	ructure, Replication and Repair	
Nucleic acid co	mposition, DNA, RNA base compositions, Chargaff's rule, primary	
and secondary s	tructure of nucleic acids, sequence information, DNA motifs, DNA	
repeats and their	r significance. A, B & Z DNA structure, major & minor groves in	
DNA, Protein D	NA interactions, supercoiling of DNA, Topoisomerase I and relaxed	
DNA, DNA gyra	se, eukaryotic gene.	
Replication in	vivo, semi-conservative mechanism of replication. Direction of	
replication. Dis	covery of DNA polymerase I and its function. DNA synthesis in	
vitro, other DNA		
Model of DNA	synthesis, molecular basis of mutations, DNA repair mechanisms,	
reverse transcrip		
Unit III: RNA s	vnthesis & Translation	
RNA polymera	se and its action, promoter sites of DNA template, sigma factor,	
elongation and	ermination of RNA chain, processing of precursors-RNA, sn-RNA	
and tRNA, mR	NA. RNA polymerase I and transcription of mRNA in eukaryotic	
cells. Transcripti	on factors in eukaryotes. Ribozyme and self splicing, genetic code-	
discovery and sil		
Recent advance	s, amino acid activation, fidelity of aminoacyl, tRNA synthesis,	
tyrosyl AMP co		
Architecture of		
synthesis, transl	ocation and peptide bond formation, termination and stop codon,	
protein synthesis		
	(15L)	
Unit IV :Regula		
Operator-operor	n concept, Negative and positive control of transcription with	

example of lac operon and Arbinose operon. Control of transcription, control of	
regulatory protein, transcription termination, repressor, croprotein. Eukaryotic	
RNA, role of histone, nuclosome, bidirectional replication, repetitive DNA,	
transcription; factor IIIA.	
(15L)	
Reference:	
Molecular cloning by Maniatis Vol. I, II, III	
DNA cloning by Glover vol. I, II, III	
Genome analysis a practical approach by devis.	
Protein engineering practical approach by Reas.	
Advanced method in protein micro sequence by Witmannn.	
Principles of Biochemistry, Leninger (2008(, Freeman Publ	
	il .

Course Code	Title	Credits
BP-CTT 204	Recombinant DNA Technology & Protein Engineering Total lectures: 60	4
Unit I: Prepara	tion, DNA analysis & Enzymatic Manipulation of DNA &	
RNA		
Genomic DNA	from mammalian tissue plant tissue and bacteria resolution	
recovery of larg	ge and small fragments of DNA using various Electromagnetic	
techniques, che	emical synthesis of oligonuleotides, genes and their uses	
analysis of DNA	A sequences by blotting and hybridization.	
Restriction en	donuclease and mapping enzymes for modification and	
radioactive labe	eling of nucleic acids, construction of hybrid DNA molecules.	
Polymerase cha	in reaction (PCR). Preparation and analysis of RNA.	
(15L)		
Unit II: a) Cons	truction of Recombinant DNA libraries & In vitro Mutagensis	
Genomic and	c-DNA libraries preparation, inserting DNA from genomic	
DNA and RN	A production of library and amplification. Screening of	
Recombinant	DNA Libraries: Screening by DNA hybridization,	
Immunological	assay and protein activity. Mutagenesiss with degenerate	
oligonuleotides	, region specific Mutagenesis, linker scanning	
Mutagenesis.		
b) Introduction of DNA into Mammalian cell and System for study of		
cloned Genes:	Transformation of DNA using calcium Phosphate, DEAE,	
Dextrin and E	lecroporation and its optimization and uses. Bacterial Yeast	
expression vect	tors gene transfer Into cultured cells. Development and use of	
transgenic anim		
expression in	prokaryotes, Heterogenous protein production in eukaryotic	

cells. (15L)	
Unit III: Micro sequencing Methods for proteins & Engineering proteins for purification	
Modern advancement such as Tar Sequencing Strategies. DABITC/ PITC	
spectra in protein sequencing. Choice of purification tag. Enzyme purification	
Tags. Affinity purification tag, ion exchange, hydrophane IC, covalent and	
chelate. Purification tags; PEG enzyme and PEG enzyme conjugates.	
(15L)	
Unit IV: Chemical Approach to protein Engineering: & protein	
engineering for thermo stability	
Functional group modification chimeric Protein, protein engineering of Ab,	
Directed Mutagenesis and Protein Engineering. Directed Mutagenesis	
procedure adding disulfide bonds, reducing number of free sulphydryl rasiduos increasing (modifying Enzyme activity/specificity Chimeric	
antibody replacement of FC domains Catalytic Antibodies (enzymes)	
Idiotype vaccines. Hybridoma technology, stability estimates from	
denaturation curve , Engineering physical and biology properties of protein	
by chemical modifications. (15L)	
 Reference: 1. Molecular Clonning,Sambrook and Russell Vol 3, Cold Sprong Harbour lab press 2. Molecular and Cell biology, Lodish et al, (2004) Freeman 3. Electrophoresis in Practice, Reiner Westermeirer, (2005) Wiley 4. Methods in Molecular Biophysics Igor N S et al (2007), Wiley 	
Molecular cloning by Maniatis Vol. I, II, III	
DNA cloning by Glover vol. I, II, III	
Genome analysis a practical approach by devis.	
Protein engineering practical approach by Reas.	
Advanced method in protein micro sequence by Witmannn.	
Principles of Biochemistry, Leninger (2008(, Freeman Publ	

Semester I Lab course details

Paper code	LAB COURSE -101	Credits	
BP-LBC-101	 PH Meter: Standardization of pH meter, Preparation of Buffers, pH titration curve of acid-base Determination values of Iso-electric point: Amino acids, proteins, phosphoric acids. Viscosity: Determination of viscosity of biofluids and chemicals Colorimeter: Verification of Beer's- Lambert law, determination of absorption maxima of coloured compounds, determination of molar extinction coefficient. Estimation of percent purities of dyes and inorganic compound 	02	
	LAB COURSE -102		
BP-LBC-102	 Calculation of measures of dispersion: a) Mean deviation b) std deviation and coefficient variation c) Quartile deviation Test of significance: a) Chi-square test b) t-test To evaluate standard error and interpretation of results of accuracy and precision 	02	
	LAB COURSE -103		
BP-LBC-103	 Microscopy: Familiarization with bright field, phase contrast, fluorescent, polarization microscopes. Classification of gram –ve & +ve ogananisms Observe cell growth/ survival by colony forming assay Estimation of cell viability by dye exclusion and colony formation assay. Observe cell death by physical and chemical agents Observe cell division and determine mitotic index (Demonstration) Observe RBC, WBC and DLC Determination of cellular 	02	

	carbohydrates by Acid shifts (PAS) reaction.		
	LAB COURSE -104	Credits	
BP-LBC 104	 Fractionation of proteins using: PAGE, PAPER electrophoresis TLC: Amino acids/ sugars/ fruit juice/oil Column chromatography for protein /pigment To study of conformational changes in biomolecules using oswall viscometer Refractoemetry: study of sugars / proteins/ amino acids 2-D gel electrophoresis of protein & Iso- electric focusing (Demonstration) 	02	

Semester II Lab courses

	LAB COURSE -201	Credits
BP-LBC- 201	 Study of thermal denaturation of DNA and protein Mutarotation of glucose and amino acids Study of DNA-Protein interaction using fluourimetry Study of fluorescence sensitivity and quenching Absorption spectra of Hb, DNA,RNA etc Study of interaction of acridene orange with DNA Identification of C-terminal and N- terminal amino acid 	02
BP-LBC -202	 LAB COURSE 202 1 Enzyme Assays (LKH, beta galacotsidase, acid phophatase, arginase, Succinic De – hydrogenase): Time , Temp, enzyme concentration, cofactors. LKH: Km & Vmax. 2. Estimation of Protein by Lowery/Biuret/Bradford methods 3. Isolation of casein protein from milk, 4.Assessment of antioxidants /Lipid peroxidation from given samples 	

	LAB COURSE 203		
BP-LBC 203	 Isolation of DNA (Nuclear and mitochondrial) Detection of DNA modification Determination of base composition of Nucleic acids Low protein concentration detection by Western blot & silver staining Restriction endonuclase digestion and separation of fragments by gel electrophoresis Gel filtrations chromatography To find out capacity & nature of the given ion exchange resin. DEAE cellulose chromatography of DNA Amplification of DNA by PCR (Demonstration) 		
	LAB COURSE 204	2	
BP-LBC 204	 Preparation of liposome's / artificial membrane: Lipid mixture/ BSA / Ovalbumin (Demo) Fluorescence anisotropy and polarization measurement Protein tryptophan fluorescent measurement. Study of membrane fluidity. Effect of hypertonic/ hypotonic/isotonic conditions on RBC membrane. Purification of substances by dialysis Study of volume regulation of erythrocyte and osmotic fragility. Ionophore effect on erythrocyte. Osmolarity: Determination of osmotic pressure of salts. Study of phase transition of membrane phospholipids To study the membrane potential using fluorescence spectroscopy 	2	