UNIVERSITY OF MUMBAI No. UG/23 of 2017-18

Circular:-

The Principals of the Affiliated Colleges in Science and the Directors of recognized Science Institutions concerned are hereby informed that in continuation syllabi relating to Master of Science (M.Sc.) degree Course passed by the Academic Council at its meeting held on 29th April, 2013 <u>vide</u> item no. 4.116 and recommendations made by the Board of Studies in Life Science at its meeting held on 9th May, 2017 has been accepted by the Academic Council at its meeting held on 11th May , 2017 <u>vide</u> item No. 4.225 and that in accordance therewith, the revised syllabus as per the (CBCS) of M.Sc. Part-II (Life Science Specialization – Biological Macromolecules) (Sem. III & IV) which is available on the University's website (<u>www.mu.ac.in</u>) and that the same has been brought into force with effect from the academic year 2017-18, accordingly.

MUMBAI - 400 032 27^{H} August, 2017 \leq_{rpt} . To,

14 aun REGISTRAR

The Principals of the Affiliated Colleges in Science and the Directors of recognized Science Institutions concerned.

A.C/4.225/11.05.2017

No. UG/23 | - A of 2017

MUMBAI-400 032

August, 2017

Copy forwarded with Compliments for information to:-

1. The Co-ordinator, Faculty of Science & Technology,

2. The Offg. Director, Board of Examinations and Evaluation,

3. The Director, Board of Students Development.,

4. The Co-Ordinator, University Computerization Centre,

Maum

REGISTRAR

P.T.C

UNIVERSITY OF MUMBAI

Syllabus for the M.Sc. Part - II [Sem III and IV]

Program: M.Sc.

Course: Life Sciences Specialisation: Biological Macromolecules

M.Sc. Part – II Life Sciences Syllabus Restructured for Credit Based and Grading System To be implemented from the Academic year 2017-2018

Course Code	UNIT	TOPIC HEADINGS	Credits	L / Week
PSLSCBMT301 (Biomathemati cs, Research Methodology and Cell Biology Techniques)	I	Biomathematics	4	
	II	Research Methodology		
	Ш	Cell and Molecular Biology Techniques		
	IV	Animal and Plant Tissue Culture		

SEMESTER III

PSLSCBMT302 (Bioenergetics and Carbohydrate Metabolism)	Ι	Bioenergetics and Carbohydrate Metabolism	- 4	
	II	Lipid Metabolism		
	Ш	Amino Acid Metabolism		
	IV	Metabolic Engineering and Systems Biology		

PSLSCBMT303 (Biomolecular Structure)	I	Chemical Bonds and Spectroscopic Techniques	4	
	11	Protein and Nucleic Acid Structure		
	111	Supramolecular Assemblies and DNA-protein Interactions		
	IV	Complex Proteins		

PSLSCBMP301	Biomathematics, Research Methodology and Cell Biology Techniques	2	
PSLSCBMP302	Bioenergetics and Carbohydrate Metabolism	2	
PSLSCBMP303	Biomolecular Structure	2	

SEMESTER IV

PSLSCBMT401 (Molecular Cell Biology)	I	Cell Division and Apoptosis	4	
	II	Biomembrane and Cell Matrix		
	III	Protein Trafficking and Targeting		
	IV	RNAi and Epigenetics		

PSLSCBMT402 (Nitrogen Metabolism and Plant Biochemistry)	I	Nucleotide Metabolism	4	
	II	Nitrogen Assimilation in Plants		
	111	Photosynthesis and Secondary Metabolism		
	IV	Free radicals and Antioxidant Biology		

PSLSCBMT403 (Biomolecular Function)	I	Protein folding and Engineering	- 4	
	Ш	Kinetics and Mechanism in Biological Systems		
		Metabolomics and Transcriptomics		
	IV	Nanobiology		

PSLSCBMP401	Molecular Cell Biology	2	
PSLSCBMP402	Nitrogen Metabolism and Plant Biochemistry	2	
PSLSCBMP403	Biomolecular Function	2	

M.Sc. Part – II Life Sciences Syllabus Restructured for Credit Based and Grading System To be implemented from the Academic year 2017-2018

Semester III Detailed Syllabus

Course Code	Title	Credits
PSLSCBMT301	Biomathematics, Research Methodology and Cell Biology Techniques (60L)	4
Unit I: Biomathematics(15L)Biomathematics:BinomialDeterminants, Matrices, Rank of Matrices by Diagonalisation method Limit and derivatives, Differentiation (including differentiability), Successive Differentiation, Integration – Definite and Indefinite (ordinary, method of substitution, special trigonometric function, partial fraction) Application of 		
Unit II: Resea Meaning of Types of re Quantitative, Research; Re Research and process; Crite Plan for dat processing an Systematic rev	rch methodology (15L) Research, Objectives of research, Motivation in research; search – Descriptive, Analytical, Applied, Fundamental, Qualitative, Conceptual, Empirical and Other Types of search Approaches; Research Methods vs. Methodology; Scientific Method; Research Process: Steps of research ria of Good Research; Sampling, Sample size determination, a collection, Methods of data collection, Plan for data d analysis; Ethical considerations during research. view and meta analysis	
Unit III: Cell an Cell Biology Te of flow cytome Plasmon resor Proteomics: P of post-transla spectrometry; scattering (SI Differential sca Genomics: C hybridization; sequencing; m level; DNA m Differential dis	Ind Molecular Biology Techniques(15L)echniques: Principles, Instrument overview, and Applications etry, Fluorescence Resonance Energy Transfer (FRET); Surface hance.eptide synthesis and Protein sequencing methods, detection notion modification of proteins; 2-D gel electrophoresis; Mass X-ray diffraction methods; Static and dynamic light LS and DLS); Capillary electrophoresis; Protein chips; anning calorimetryDigonucleotide synthesis; DNA chips/microarrays; DNA DNA sequencing methods, strategies for genome nethods for analysis of gene expression at RNA and protein hicroarrays; Site directed mutagenesis; Gene knockdown; splay; Serial analysis of gene expression (SAGE)	

Unit IV: Animal and Plant Tissue Culture	(15L)	
Plant tissue culture: Basic concepts in cell culture - cell culture, C	Cellular	
Totipotency, Somatic Embryogenesis		
In vitro culture: approaches & methodologies - preparation steps for	tissue	
culture, surface sterilization of plant tissue material, basic procedu	ure for	
aseptic tissue transfer, incubation of culture.		
Tissue culture methodologies: introduction - Callus Culture, Cell Susp	ension	
Culture, Protoplast culture and hybridization, Organogenesis, plant	micro	
propagation, cryopreservation.		
Animal tissue and cell culture:		
In vitro culture: approaches & methodologies - preparation steps for	tissue	
culture, basic procedure for aseptic tissue transfer, incubation of cult	ure.	
Tissue culture methodologies: introduction - Source of tissue, p	rimary	
culture, differentiation of cells, growth kinetics, animal cell lines and	d their	
origin and characterization		
Cloning & Selection of specific cell types – cloning, somatic cell fusion	on and	
HAT selection, Medium suspension fusion, selection of Hybrid	clone,	
production of monoclonal antibodies, stem cell culture		
Organ Culture - Culture of embryonic organs, whole embryo c	ulture,	
culture of adult organs		

PSLSCBMP301	Bionanalytical Techniques and Cell Dynamics (60L)	2	04
	 pka values of Ala or Gly by Titration Curve Determination of melting temperature (Tm) of DNA Spectroflourimetric analysis of proteins Preparation of lipid bilayer vesicles (liposomes) using the purified lipids Effect of detergents on membranes Fractionation of cell organelles from animal/plant tissues and identification by marker enzymes Estimation of inorganic phosphorus by Fiske and SubbaRao method Protease protection assay to study protein transport and secretion 		

Course Code	Title	Credits
PSLSCBMT302	Bioenergetics and Metabolism (60L)	4
Unit I: Bioenerget Bioenergetics: Con of ΔG for a rea standard free end energy change reactions; Redox potentials & free introduction, pho and sugar phospha	tics and Carbohydrate Metabolism (15L) ncept of free energy, standard free energy, determination ction; Relationship between equilibrium constant and ergy change, biological standard state & standard free in coupled reactions; Biological oxidation-reduction a potentials; Relation between standard reduction energy change; High energy phosphate compounds – sphate group transfer, free energy of hydrolysis of ATP ates alongwith reasons for high ΔG	
Carbohydrate M microorganisms; Gluconeogenesis, aminobutyrate sh Doudoroff pathw Hormonal regula carbohydrate met	Metabolism: Glycolysis in higher organisms and Pentose phosphate pathway and its regulation; glycogenesis and glycogenolysis, glyoxylate and Gamma nunt pathways; Cori cycle; Anaplerotic reactions; Entner- ay; Glucuronate pathway; Metabolism of disaccharides; ation of carbohydrate metabolism; Inborn errors of tabolism	
Unit II: Lipid Meta Fatty acid catabo fatty acids; Oxida Role of carnitine bodies; Energetics	abolism (15L) lism: Hydrolysis of tri-acylglycerols; α -, β -, ω - oxidation of ation of odd numbered fatty acids – fate of propionate; ; Degradation of complex lipids; Formation of ketone s of beta oxidation	
Fatty acid biosyn structure and fur acylglycerols, ph Metabolism of cho steroid hormones chloroplast; Inbor	thesis: Acetyl CoA carboxylase; Fatty acid synthase; ACP action; Lipid biosynthesis; Biosynthetic pathway for tri- osphoglycerides, sphingomyelin and prostaglandins; plesterol and its regulation; Biosynthesis of bile acids and s; Alternative pathway for isoprenoid biosynthesis in an errors of fatty acid metabolism	
Unit III Amino Aci Amino acid cata metabolism - Tran deamination of a CoA, succinate, fu regulation; Ammo	d Metabolism (15L) bolism: Proteolysis; General reactions of amino acid nsamination, decarboxylation, oxidative & non-oxidative mino acids; Acetyl CoA, alpha ketogutarate, acetoacetyl umarate and oxaloaccetate pathway; Urea cycle and its nia excretion.	
Biosynthesis of A Histidine; One car serine, cysteine, specialized produc	Amino Acids: Biosynthesis of aromatic amino acids and bon atom transfer by folic acid (Biosynthesis of glycine, methionine, threonine.); Conversion of amino acids to cts; Inborn errors of protein metabolism	
TCA cycle: Centra of energy rich b	I role of TCA cycle in energy generation and biosynthesis ond; Integration/regulation of carbohydrate, lipid and	

protein meta	bolism					
Unit : IV Me	abolic Engineeri	ng and System	ns Biology		(15L)	
Metabolic Importance resources; So metabolic en analysis	Engineering: H of metabolic cope and future of gineering; Metab	Historical pe engineering; of metabolic e bolically engine	erspective Paradigm engineering; eered organ	and intro shift; Infc Plant and n isms; Metak	duction; ormation nicrobial polic flux	
Systems Bio Practical app System Biolo Markup lan technology.	logy: Concepts lications of Syste gy platforms Pro guages used in	and working em Biology in oprietary syste n systems b	principles o Life Scienco em Biology biology. Int	of System E es - Introdu platform; I roduction	iology - action to Different to NGS	

Practicals:			
PSLSCBMP102	Bioenergetics and Metabolism (60L)	2	04
	1. Determination of pyruvate by 2,4-dinitrophenyl		
	hydrazine method		
	2. Isolation of cholesterol and lecithin from egg		
	yolk		
	3. Measurement of free radicals by		
	spectrophotometric method		
	4. Analysis of free radical scavengers and		
	antioxidant enzymes (Assay of any one -		
	peroxidase, catalase, phenol oxidase, ascorbic acid oxidase)		
	5.Determination of N- and C-terminal amino acids (demonstration)		
	6. Effect of metal ions on the activity of		
	enzymes/proteins		
	7. Protein purification methods:		
	A. Isolation of casein from milk		
	B. Purification of an enzyme by ion exchange		
	chromatography/affinity chromatography		
	C. Use of ammonium sulphate precipitation and		
	dialysis		
	D. Use of gel filtration		
	E. SDS-PAGE		
	8. Polyacrylamide gel electrophoresis under non		
	denaturing conditions		
	A. Silver staining		
	B. Activity staining of enzymes		
	C. Determination of effect of acrylamide		
	concentration on the mobility of proteins		
	concentration on the mobility of proteins		

Course Code	Title		Credits
PSLSCBMT103	PSLSCBMT103 Biomolecular Structure (60L)		4
Unit I: Chemical Be Inter atomic intera weak, non-covaler Waals forces and interactions and th Spectroscopic teo Fluorescence, Infra Use of lasers for sp Optical Activity: applications of OB	onds and Spectroscopic Techniques actions, ionic, covalent and metallic bonds; Impo nt bonded interactions in biomolecules, such a hydrogen bonding; Energies and geometrics neir roles in structure and conformation of bion chniques: Principle, methodology and applic ared, Raman, ESR, Atomic absorption spectrosco bectroscopy. Importance of chirality in biomolecules; Princ	(15L) ortance of s van der of these nolecules. ations of opy; NMR; tiples and	
Unit II: Protein an Structure and Sta Ribonuclease A, proteins by Ramac Covalent modifi methylation, ribos DNA structure: A helix; DNA superc	applications of ORD and CD Unit II: Protein and Nucleic Acid Structures (15L) Structure and Stability of Proteins: Myoglobin, Hemoglobin, Lysozyme, Ribonuclease A, Carboxypeptidase and Chymotrypsin; Conformation of proteins by Ramachandran plot; N and C terminal analysis of proteins Conformation of proteins: Phosphorylation, adenylation, methylation, ribosylation DNA structure: A/B/Z/D forms of double helical structure of DNA; Triple heliw DNA superspiling and tagging a		
Unit III: Supramol Viruses: Viral asse Prokaryotes and processing of rRN. Nucleic Acid Bindi turn-helix; Beta I expression	ecular Assemblies and Complex proteins mbly; Capsid; Capsomere, eg., TMV, HIV, Adenor Eukaryotes: Ribosomal assembly; Biosynth A; Macromolecular interactions in regulating tr ng Motifs in Proteins: Leucine zipper; Zinc finge parrel; OB fold and their role in regulation	(15L) virus nesis and anslation. ers; Helix- of gene	
Unit IV: Complex Proteins(15L)Metalloproteins: General principles of metal coordination; Heme- and non- heme proteins.Transport proteins: Oxygen transport proteins from vertebrate and invertebrate (haemoglobin, hemocyanin, cytochrome C)Bacterial two-component signalling systems and their role in regulating sugar transport, catabolite repression, phosphotransferase system, chemosensory mechanisms and sensory modulation of C-N metabolism.			
	Practicals:		.

PSLSCBMP103	Biomolecular Structure (60L)	2	04

Semester IV Detail Syllabus

Course Code	Title	Credits
PSLSCBMT201	Molecular Cell Biology (60L)	4
Unit I: Cell Division Cell division and c control of cell c Apoptosis : Factor apoptosis; Recepto Role of a Carcinogenesis : C carcinogenesis; mo CEA, hCG; Telome aging	and Apoptosis (15L) cell cycle: Meiosis: its regulation, steps in cell cycle, and ycle. Cell-cell fusion in normal and abnormal cells. is inducing apoptosis; Genes and proteins involved in ors with death domains and their signalling pathways; poptosis in development and disease. Characteristics of cancerous cells; Agents promoting polecular basis of cancer therapy, Tumor markers - AFP, ere replication; Telomerase and its role in cancer and	
Unit III: Biomembra Biomembranes: proteins, their so reconstitution; Lip Nuclear pore co transport; Role i import–export cyc Molecules of the intermediary filan tubulin, examples function, eg., dyn proteins on microv	rane and Cell Matrix (15L) Structure and assembly; Orientation of membrane abuilisation with detergents and enzymes; Membrane bosomes and their application in biology and medicine omplex: Structure; Assembly and disassembly; RNA n macromolecular exchange and regulation; nuclear le matrix: Proteins of the microfilament, microtubules and nents; Structure, properties and assembly of actin and a and roles of these filaments in cell structure and amics and roles of kinesin and dynein; Organization of <i>v</i> illus.	
Extracellular M a Intracellular transp	atrix: Structure; Cell-cell/cell-matrix interactions; port – cilia and flagella	
Unit III: Protein Tr N-glycosylation in proteosomal degra Intracellular and in pathways in pro- sequences; Co-tr Targeting of mitoc Vesicle biogenesis polypeptides (solu SNAREs; Methods transport	afficking and Targeting (15L) the ER and Golgi (quality control, UPR, ERAD and idation membrane protein trafficking and targeting; Secretory karyotes and eukaryotes; Endocytic pathways; Signal anslational transport (protease protection assay); hondrial, chloroplast, peroxisomal and nuclear proteins; s and ER to Golgi transport; ER translocation of ible and transmembrane); ER chaperons; SNAPs and of studying Protein Transport; Disorders of protein	
Unit IV: RNAi and I Regulatory RNAs: mechanism in euk molecules in plants	Epigenetics (15L) Historical background; RNA interference as regulatory aryotes; Slicer and dicer; Synthesis and function of RNAi s; Gene silencing mechanisms; RNAi-based gene therapy:	

Chromatin remodelling in human disease and diagnosis **Epigenetics:** Background, chromosomal inheritance taking fission yeast as an example; DNA methyltransferases, DNA methylation maintenance; Histone modification and regulation of chromatin structure; Bivalent histones; Histone demethylation; Epigenetic therapy; Epigenetic regulation of gene expression

Practicals:

PSLSCP201	Molecular Cell Biology (60L)	2	04
	1. Nucleic acid isolation and blotting		
	 A. Isolation of RNA from <i>E. Coli</i> B. Spectrophotometric characterization of RNA C. Capillary blotting (Southern/Northern) of nucleic acids from agarose gels D. Preparation of cDNA and RT-PCR 		
	2. Isolation of DNA and demonstration of apoptosis of DNA laddering		
	3. MTT assay for cell viability and growth		
	4. UV damage and repair mechanism in <i>Escherichia coli</i> or <i>Serratia marcescens</i>		
	5. Determination of Molar absorption coefficient of tyrosine		
	6. Measurement of DNA by DPA method		
	7. Assay of alanine and aspartate aminotransferases		
	8. Measurement of activity of plant nitrate assimilation enzymes		
	 A. Isolation of nitrate reductase from plants B. Effect of environmental factors and hormones (CO₂, light, pH, growth hormones) 		
	9. Plant pigments		
	 A. Extraction of plant pigments from spinach B. Separation by column chromatography C. Determination of absorption spectra of plant pigments 		

PSLSCBMT202	Nitrogen Metabolism and Plant Biochemistry	(60L)	4
Unit II: Nucleotide Nucleotide Metab degradation of nu pyrimidine nucleo foluc acid in nuc ribonucleotide re polynucleotides; In of nucleotide meta	Metabolism olism: Role of nucleases and phosphodiesterase cleic acids; Biosynthesis and degradation of pur tides and their regulation; Thymine biosynthesis leotide biosynthesis; Purine salvage pathway; eductase; Biosynthesis of deoxyribonucleotic nhibitors of nucleic acid biosynthesis; Inherited c abolism; Anticancer drugs.	(15L) es in the ines and ; Role of Role of les and lisorders	
Unit II: Nitrogen A Nitrogen Fixation: mechanism of act regulation; Hydrog Nitrate assimilation nitrite reductase, regulation of nitr glutamine syntheta	ssimilation in Plants Nitrogenase complex; Electron transport ch tion of nitrogenase; Structure of 'NIF' genes en uptake and bacterial hydrogenases n in plants: Structural features of nitrate reduct incorporation of ammonia into organic com rate assimilation; Ammonium assimilating enz ase, glutamate synthase and GDH	(15L) ain and and its tase and pounds, cymes –	
Unit III: Photosyntl Photosynthesis: Lig transport and ATP and CAM pathw Bioluminescence. Special features o biosynthesis), lign Biosynthesis of nice	hesis and Secondary Metabolism ght harvesting complexes; plant mitochondrial el synthesis; alternate oxidase; Carbon fixation k rays; Photoprotective mechanisms; Photores f secondary plant metabolism, terpenes (class in, tannins, pigments, phytochrome, waxes, a otine; Functions of alkaloids;	(15L) ectron by C ₃ , C ₄ piration; ification, Ikaloids;	
Unit IV: Free radica Free radicals: Int Species (ROS/RNS) Disease states and Signal Transductio Metabolism. Oxida Detection of free r and determination Antioxidants: Diet components of an	als and Antioxidant Biology roduction & Chemistry of Reactive Oxygen/I); Sources of ROS/RNS; Cellular damage by R d free radicals; Transition metals as catalyst; I on; Oxidative stress; Beneficial Aspects of C ative damage markers Methods of Detecting R adicals in biological systems; EPR spectroscopy p t-Derived Antioxidants; Enzymatic and non-er ntioxidative defense mechanism (catalase, per	(15L) Nitrogen OS/RNS; ROS and Dxidative OS/RNS; rinciples	
superoxide dismut chelators); Chemic	tases, vitamins E and C, uric acid, glutathion al scavengers; Antioxidant therapy	e, metal	

Practicals:

PSLSCBMP202	PRACTICAL VII: Nitrogen Metabolism and Plant Biochemistry (601)	2	04
	1. Analysis of DNA		
	 A. Estimation of DNA and RNA by UV absorption method B. Determination of purity of nucleic acids C. Conformational analysis of plasmid DNA by agarose gel electrophoresis 		
	2. Enzyme inhibition		
	A. Inhibition of enzyme activity B. Determination of Ki values		
	3. Immobilization studies:		
	 A. Preparation of urease entrapped in alginate beads and determination of percent entrapment B. Study of the kinetics of the rate of urea hydrolysis by urease entrapped alginate beads C. Study of reusability and storage stability of urease entrapped alginate beads D. Immobilization of urease by covalent attachment to solid support 		
	4. 2-D Gel electrophoresis (Demonstration)		
	5. Study of nanoparticles		
	A. Synthesis of Silver nanoparticles B. Spectroscopic characterisation		

Course Code	Title	C	Credits
PSLSCBMT203	Biomolecular Function	(60L)	4
Unit I: Protein fold	ling and Engineering	(15L)	
Protein Folding: Compact Interm mechanisms; Mol proteins and enzyr	Folding pathways; Intermediates of p ediates; Hierarchical and non-heira ten globule structure; Role of chapero mes in protein folding	protein folding; rchical folding ns, heat shock	
Protein Engineerir enzymes; Conforn Effect of amino ac	ng Design and construction of novel nation of proteins in general and enzyme cids on structure of proteins; Energy stat	proteins and es in particular; tus of a protein	

molecule, Structure- function relations of enzymes	
Basic concepts for design of a new protein/enzyme molecule; Specific	
examples of enzyme engineering – Dihydrofolatereductase	
Unit II: Kinetics and Mechanism in Biological Systems (15L)	1
Enzyme Kinetics: Enzyme catalysis and factors contributing to high catalytic rates; Molecular aspects of catalysis for specific enzyme substrate complexes (Lysozyme, carbonic anhydrase, carboxypeptidase and chymotrypsin); Multisite binding of ligands to proteins; Bohr's effect; Models of Allostery - MWC and KNF models Hill's equation coefficient Immobilised enzymes: Methods and applications	
Unit III: Metabolomics and Transcriptomics(15L)Metabolomics:Modern Concept of metabolomics; Detection and characterization of metabolites; metabolite library; Metabolite isolation and analysis by Mass Spectrometry, NMR, LIF, LC-UV; Metabolomics databases and resource (e.g. MetaboLights)Plant metabolomics:Plant stress responses, nutrigenomics, and metabolite dynamics; Metabolite profiling in phenotyping and breeding (Arabidopsis ecotypes, rice)Transcriptomics:basic concepts and technology, data normalization, clustering (Hierarchical, k-means, SOM), detection of over expression and under expression (PCA).	
Unit IV: Nanobiology(15L)Introduction: Nanoscience; Nanobiotechnology; Nanodevices; Applications in various fields viz. Physical and Chemical, Materials and Life Sciences Application: Gold bonding proteins; Nanopharmaceuticals such as liposomal formulations; Membrane nanodiscs; Biosensors; NanowiresSynthesis of nanostructure: Physical, chemical and biological methods Properties and Characterization of nanomaterials: Optical (UV-Vis / Fluorescence), X-ray diffraction; Imaging and size (Electron microscopy, Light scattering , Zeta potential),; Surface and composition (ECSA, EDAX, AEM/STM).	

Practicals:

		2	04
Biomolecular Function	(60L)		
1.			
	Biomolecular Function 1.	Biomolecular Function (60L) 1.	Biomolecular Function (60L) 2 1.